A new synonymy for the Madagascan copal spider fauna
(Araneae, Selenopidae)

David PENNEY, Hirotsugu ONO & Paul A. SELDEN

ABSTRACT

Garcorops jadis Bosselaers, 2004 is identified as a senior synonym of ?Anyphops cortex Wunderlich, 2004 based on the structure of the male pedipalp, particularly the form of the retrolateral tibial apophysis. The young age of Madagascan copal supports the idea that G. jadis may be a previously undiscovered extant species. The possibility that a copal inclusion may belong either to an extant or an extinct species highlights the importance of considering both neontological and palaeontological data when describing new taxa from copal-producing regions.

D. PENNEY & P.A. SELDEN, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK (david.penney@manchester.ac.uk, paul.selden@manchester.ac.uk)

H. ONO, Department of Zoology, National Science Museum, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo, Japan (ono@kahaku.go.jp)

Keywords: amber, Anyphops, Garcorops, sub-fossil resin, taxonomy

INTRODUCTION

Amber, fossilized tree resin, is a well-known Fossil-Lagerstätte (an exceptional occurrence of well-preserved fossil biota). Living animals become trapped in the sticky resin when it is exuded by the tree and subsequently engulfed by more resin (e.g. Penney 2002), which hardens in contact with the air. Reasons for trees to exude resin are not well known and may be related to wound repair, but many insects, and therefore their predators, are attracted to resin seeps. Following burial in sediment, diagenetic processes turn the resin into the fossilized amber. Resin which has been only weakly fossilized is softer and is referred to as copal. Poinar (1992) defined copal as recently deposited resin that can be distinguished from amber by its physical properties. If mouldable by hand, Poinar considered it still to be resin, if not it was classed as copal up until 3–4 Ma, by which time it should have acquired the unyielding properties of amber. Other authors have provided similarly ambiguous definitions and some authors restrict their usage of the term copal to refer only to resins from particular tree genera (see Langenheim 1995), including Hymenaea verrucosa Gaertner from which Madagascan copal is derived.

There is considerable confusion regarding the appropriate usage of the terms recent resin, ancient resin, copal, and sub-fossil resin, which define the various stages from resin secretion until amber formation. There is no definitive solution to the above problem because fresh resins and ambers are members of a continuous series and no objective analysis capable of determining reliably the relative maturity of fossil resins is currently available (Anderson 1996). Anderson (1996) proposed a scale based on 14C dating to provide a consistent nomenclature for discussing immature resins: 0–250 yrs = modern resin, recent resin, or copal; 250–5,000 yrs = ancient resin; 5,000–40,000 yrs = sub-fossil resin; >40,000 yrs = amber or fossil resin. This may seem a rather young age for considering resins as fossilized, particularly in light of previous definitions. However, as Anderson (1996) remarked, there is no firm age definition for the term ‘fossil’ and mammoths and other extinct species of the order of a few tens of thousands of years old, are usually referred to as fossils. This issue is still open to debate, but the correct usage of these terms warrants consideration. Carbon dating results have demonstrated that copal from Madagascar can be as young as 50 years old (Poinar 1999).

Spiders are well known as fossils in amber deposits but have only recently been identified and described from copal. Wunderlich (2004: 34) suggested the specimen described by Holl (1829) as Entomocephalus formicoides n. gen. & sp. from Baltic amber was a fake in Madagascan copal. The present location of the holotype is unknown. The description consisted of a single sentence, and Holl’s figure [plate 8, fig. 68a] suggests it is almost certainly a salticid belonging to an ant-mimicking genus such as Myrmarachne, although the figure and description mention only six eyes (Penney 2003). It was placed erroneously in Archaeidae by Petrunkevitch (1958).
Similarly, Wunderlich (1998) described *Mysmena dominicana* (Mysmenidae) and *Grammonota defor- mans* (Linyphiidae, now placed in *Ceratinopsis* [Wunderlich 2004]) and Wunderlich (1999) reported the family Archaeidae as present in Dominican Republic amber. However, both these papers were based on specimens that are actually preserved in Madagascan copal (Wunderlich 2004). Lourenço (2000) described the new sub-fossil species *Archaea copalensis* (Archaeidae) in Madagascan copal. This species was synonymized with the extant *Archaea gracilicollis* Millot, 1948 by Wunderlich (2004). Wunderlich (2004) described sub-fossil spiders in copal from Colombia and Madagascar. Species from the following spider families are currently known as sub-fossils in Madagascan copal: Mysmenidae, Archaeidae, Clubionidae, Corinnidae, Deinopidae, Dictynidae, Hahnidae, Hersiliidae, Linyphiidae, Miturgidae, Oonopidae, Philodromidae, Pholcidae, Salticidae, Scytodidae, Segestriidae, Selenopidae, Tetragnathidae, Theridiidae, Thomisidae, and Uloboridae (Wunderlich 2004: 1834).

The spider family Selenopidae consists of 177 extant species in four genera (Platnick 2004). They are free-living, agile spiders often found on rocks, walls, and tree trunks and hence have a high potential for becoming entombed in secreted tree resin. Fossil species have been described from Miocene Dominican Republic amber (see Schawaller 1984; Wunderlich 1988, 2004; Penney 2001). The family is well represented in the Afrotropical region (Dippenaar-Schoeman & Jocqué 1997), with extant species in four genera recorded from Madagascar: *Hovops* (Benoit 1968), *Anyphops* (Corronca 1998), *Garcorops* (Corronca 2003), and *Selenops* (Corronca 2003). The genus *Garcorops* was erected by Corronca (2003) for three new species from Madagascar and the Comoro Islands. Bosselaers (2004) described *G. jadis* Bosselaers, 2004 for three new species from Madagascar and the Comoro Islands.Bosselaers (2004) described *G. jadis* Bosselaers, 2004 from Madagascan copal and Wunderlich (2004) described *Anyphops cortex* Wunderlich, 2004 also from Madagascan copal. A detailed examination of both holotypes revealed that the specimen described by Wunderlich (2004) was incorrectly placed in *Anyphops* (as suspected by Wunderlich) and that it is identical to *G. jadis*. The paper by Bosselaers was published in March 2004, whereas that by Wunderlich was published in September 2004 and the latter author did not cite the former. Thus, here we establish *G. jadis* as a senior synonym of *?A. cortex*. This paper is a contribution to the African Arachnological Database (AFRAD 2005).

MATERIAL EXAMINED

Garcorops jadis Bosselaers, 2004 holotype (MRAC 216 106), held in the Musée Royal de l’Afrique centrale, Belgium and *?Anyphops cortex* Wunderlich, 2004 holotype currently held in the private collection of Jörg Wunderlich (F1114/CM/AR/SEL/CJW), eventually to be deposited in the Senckenberg Museum Frankfurt, Germany. The piece containing the holotype of *G. jadis* was accidentally broken into two pieces following publication of Bosselaers (2004) and before being deposited at the MRAC. (Bosselaers pers. comm. 2005) but the spider inclusion is undamaged. No extant *Garcorops* specimens were available for study because the specimens have not yet been deposited in the MRAC and are still in the possession of Corronca (Jocqué pers. comm. 2005).

SYSTEMATICS

Order **Araneae** Clerck, 1757
Suborder **Opisthothelae** Pocock, 1892
Infraorder **Araneomorphae** Smith, 1902
Family **Selenopidae** Simon, 1897
Genus **Garcorops** Corronca, 2003

Garcorops jadis Bosselaers, 2004

Figure 1

Diagnosis As per Bosselaers (2004) except that retrolateral tibial apophysis is directed apically (see Remarks below).

Fig. 1. *Garcorops jadis* Bosselaers, 2004. A. eye arrangement, left side = eyes of the holotype of *G. jadis*, right side = eyes of the holotype of *?A. cortex*; B. left palpal tibia of holotype of *?A. cortex*, dorsal view; C. right palpal tibia of same specimen, antero-dorsal view. Abbreviations: ALE, anterior lateral eyes; AME, anterior median eyes; cy, cymbium; drta, dorsal retrolateral tibial apophysis; PLE, posterior lateral eye; PME, posterior median eye; ti, tibia; vrta, ventral retrolateral tibial apophysis.
Remarks The specimen described by Wunderlich has an eye arrangement characteristic of Garcorops and identical to that of G. jadis (Fig. 1). The pedipalps of the specimen described by Bosselaers are displayed in ventral and ectal views (see Bosselaers 2004: figs 3–5, 7), whereas in that of Wunderlich they are visible in dorsal and subectal views (see Wunderlich 2004: 1852, fig. 25). The structural details of the conductor, median apophysis, and the base of the embolus appear identical, as do those of the retrolateral tibial apophysis. However, the dorsal retrolateral tibial apophysis branch is not directed ventrally as per the diagnosis of Bosselaers (2004), but apically (Fig. 1) as in G. madagascar Corronca, 2003. It differs from the latter in being extremely thin and slightly curved retrolaterally in dorsal view and by being spatula-shaped (almost like a shoehorn), with a smooth curved tip in medial view (particularly evident in the specimen described by Wunderlich) (Fig. 1); the tip in G. madagascar is distinctly pointed (see Corronca 2003: fig. 2C–D).

Bosselaers (2004) suggested that G. jadis may be a previously undiscovered extant species, as was the archaied described by Lourenço (2000) and as is almost certainly the case with the herentials spider described by Wunderlich (2004) (S. Foord pers. comm. 2005). The young age of the Madagascan copal supports this idea. The possibility that a copal inclusion may belong either to an extant or an extinct species highlights the importance of considering both neontological and palaeontological data when describing new taxa from copal-producing regions.

ACKNOWLEDGEMENTS

We thank Rudy Jocqué (MRAC) and Jörg Wunderlich (Hirschberg-Leutershausen) for providing holotypes. Jan Bosselaers and José Corronca are thanked for providing reprints. David Grimaldi (American Museum of Natural History) and Stefan Foord (University of Venda, Thohoyandou) are thanked for discussing. DP acknowledges a Leverhulme grant, PAS acknowledges Leverhulme and NERC grants, and HO acknowledges Grant-in-aid No.16540431 for Scientific Research, from the Ministry of Education, Science, Sports and Culture, Japan. This work was completed during a short research visit by HO to the University of Manchester.

REFERENCES

AFRAD. 2005. www.arc-afrad.agric.za

SCHAWALLER, W. 1984. The family Selenopidae in Dominica. Stuttgarter Beiträge