SHORT NOTE – NOTA BREVE

A TRIGONOTARBID ARACHNID FROM THE UPPER CARBONIFEROUS OF THE SAN GIORGIO BASIN, SARDINIA

PAUL A. SELDEN 1 & GIAN LUIGI PILLOLA 2

Received: February 2nd, 2009, accepted: April 23, 2009

Key words: Anthracomartidae, Westphalian, Sardinia.

Abstract. A trigonotarbid arachnid from the Upper Carboniferous (Westphalian D) of San Giorgio Basin, Sardinia, is described and referred to Anthracomartus voelkeliatus Karsch, 1882, the type genus of the family Anthracomartidae. The occurrence extends the range of this arachnid order outside of the major Euramerican coal basins and into the western Mediterranean region. This is the first pre-Miocene arachnid from Italy to be described.

Riassunto. L’aracnide trigonotarbide del Carbonifero superiore (Westfalian D) proveniente dal Bacino di San Giorgio (Iglesias) è stato riferito ad Anthracomartus voelkeliatus Karsch, 1882, il genere tipo della Famiglia Anthracomartidae. La presenza di questo taxon in Sardegna estende la distribuzione dell’Ordine Trigonotarbida al di fuori del classico bacino carbonifero Euroamericano verso il Mediterraneo occidentale. Inoltre, Anthracomartus voelkeliatus è il più antico aracnide pre-miocenico, descritto formalmente, proveniente dal territorio italiano.

Introduction

Trigonotarbid is an extinct order of arachnids which are currently known from the late Silurian (Prí dulf: c. 414 Ma) to the early Permian (Asselian: c. 290 Ma) (Dunlop 1996a; Rößler 1998; Rößler et al. 2003). They occur most frequently in Upper Carboniferous rocks of Europe and North America, where they may be one of the commoner arachnids in Coal Measures ecosystems. They are much more frequent than spiders, for example, in these assemblages. Around 70 trigonotarbid species have been described, although this is probably an over-estimate since most recent revisions have resulted in numerous synonyms (e.g. Rößler 1998). Trigonotarbs resemble spiders, but lack silk-producing spinnerets, and have a characteristic morphology of opisthosomal tergites divided into median and lateral plates. Trigonotarbs are sister to all the other members of Pantetrapulmonata: (Trigonotarida (Araneae (Amblypygi (Uropygi Schizomida))) (Shultz 2007). They were almost certainly ambush predators on other arthropods. Well-preserved Devonian examples have mouthparts which indicate that they were predatory, they were not venomous, and digestion was preoral as in modern arachnids (Shear et al. 1987; Dunlop 1994). One family of trigonotarbs, Anthracomartidae, has been placed in its own order, Anthracomartida by Petrunkevitch (1949). However, following the suspicion expressed by Shear et al. (1987) that Anthracomartida may be synonymous with Trigonotarida, differing only in that, in the former, the opisthosomal tergites are divided into 5 plates, while in the latter there are only 3, Trigonotarida and Anthracomartida were reunited under the former name by Dunlop (1996b).

The majority of described Carboniferous trigonotarbs have been found at classic Westphalian localities like the Saarland of Germany, the British Middle Coal Measures, Mazon Creek in the USA and Nyarany in the Czech Republic. One is known from the Iberian peninsula (Selden & Romano 1983), but none has hitherto been reported from Italy. Indeed, this is the first de-
scription of a fossil arachnid older than Miocene from Italy. There is a record of two specimens of spiders in Quaternary (Mindel-Riss interglacial) diatomite from the Rome area (Bottali 1975), spiders have been reported from Oligocene Sicilian amber (Skalski & Veghian 1990), and a mite was described from Miocene disodile (brown coal) deposits of Mellilli, Sicily (Pampaloni 1902). The occurrence of the specimen described here was reported by Del Rio & Pittau (1999) and Benedetti et al. (2002) and the specimen was figured by Del Rio et al. (2002).

Geological setting

The specimen described here comes from the upper third of Unit B of the San Giorgio Formation (Upper Carboniferous: Westphalian D-Early Stephanian) in a large section between the SS130 road and the former mine, near the town of Iglesias, south-west Sardinia (Del Rio et al. 2002) (Fig. 1). It is preserved in pale grey lime mudstone with abundant plant remains (mainly the sphenopsid Annularia spinulosa). The fossil (Figs 2, 3) is an almost complete specimen preserved in dorsal view, although the appendages are incomplete, and some on the left side are missing altogether. The specimen appears as a coalified replacement on the mudstone, and is surrounded by many plant remains preserved in the same manner.

Methods

The specimen was studied under a Leica MZ16 stereomicroscope, drawn using a camera lucida attachment on the microscope, and photographed with a Canon 5D digital camera and 50 mm macro lens. The final drawing and photographs were prepared for publication using the Adobe CS3 software suite.

Systematics

Order Trigonotarbida Petrunkevitch, 1949
Family Anthracomartidae Haase, 1890

Remarks. The specimen is referred to this family of trigonotarbids on the basis that it bears the diagnostic character of opisthosomal tergites divided into 5 plates, rather than 3 in other trigonotarbid families.

Genus Anthracomartus Karsch, 1882

Remarks. The genus Anthracomartus is diagnosed on the presence of a smooth opisthosomal margin, rather than scalloped as seen in other anthracomartid genera (Dunlop & Rößler 2002).

Anthracomartus voelkellianus Karsch, 1882

Figs 2, 3

2002 Anthracomartus Del Rio et al., p. 228, fig. 5(3).

Material: Single specimen (part only), number MPC 11969, in the Palaeontological Museum of Carbonia, Sardinia.

Description. Only parts of the carapace, opisthosoma and a few leg podomeres preserved in dorsal view. Length of preserved carapace and opisthosoma 15.0. Cuticle surface tuberculated over all visible (dorsal) and exposed part of ventral surfaces; tubercles in rows on femora. Carapace subquadrate, but anterior and lateral edges broken, so original shape not known, 5.1 long, 7.1 wide as preserved. Carapace posterior edge straight. Carapace surface slightly raised, with central depression; margin of raised area procurred in front of posterior margin. Carapace raised area falls away at distinct, straight, transverse scarp immediately in front of eyes.

Fig. 1 - Location map of the Upper Carboniferous San Giorgio section.
Small, triangular part of carapace (clypeus) visible in front of eyes. Pair of eyes visible at anterior edge of raised area, on raised eye tubercle. The existence of additional, lateral eyes (as seen in some trigonotarbidz) cannot be confirmed. Proximal parts of appendages III-VI (walking legs 1-4) preserved on right side; part of anterior appendage (pedipalp?) and a more posterior leg preserved on left side. Individual podomers barely distinguishable, but first rather longer articles emerging from beneath body, bearing rows of tubercles, presumed to be femora. Opisthosoma broadly oval, slightly wider (10.1) than long (9.9). Characteristic anthracomartid tergite pattern, including a short tergite 1, large diplotergite (segments 2 + 3) and division of most tergites into five plates with median plate wider than lateral plates. Anterior borders of anterior tergites straight, but become progressively more strongly procurred posteriorly from tergite 7. Median plate of tergite 9 2-3 × as long as other tergites, with recurved posterior margin; tergite 10 only a median plate. Small piece of internal ventral cuticle visible where parts of tergites 9 and 10 broken.

Remarks. The specimen is referred to *Anthracomartus voelkelianus* Karsch, 1882 with the following reasoning. In the *Treatise on Invertebrate Paleontology*, Petrunkevitch (1955) recognized nine genera of anthracomartids. Two of these, *Brachypyge* Woodward, 1878 and *Matocercus* Pocock, 1911, have distinctly scalloped opisthosomal margins whereas our specimen shows a smooth opisthosomal outline. The remaining genera were defined principally on carapace morphology. These genera were defined on carapace shape yet, in every case, the carapace edge is missing, poorly defined, or subject to preservational artefacts. Indeed, Dunlop & Rößler (2002) pointed to a specimen in the National Museum in Prague in which part and counterpart of the same specimen had been identified to different genera, possibly by Petrunkevitch himself. Moreover, nearly all of the types of these genera have been, at one time or another, been referred to *Anthracomartus*. Consequently, Dunlop & Rößler (2002) validated the genus *Anthracomartus*, based on a redescription of the genotype, and postulated that the poorly defined genera listed by Petrunkevitch (1955) would become synonyms of *Anthracomartus* when restudied. One such which resembles our specimen to a greater degree than most is *Pleomartus palatinus* (Ammon, 1901), from the upper Carboniferous of Germany. Like the Sardinian specimen, the preserved part of the carapace and the opisthosoma are wider than long. However, the body tubercles in *P. palatinus* are arranged in distinctive polygons (Ammon 1901, fig. 3). Moreover, Ammon’s figure 2
shows _P. palatinus_ to have an anteriorly broadening carapace whereas in _Anthracomartus_, including our specimen, the carapace narrows anteriorly.

Dunlop & Rößler (2002) included four species in _Anthracomartus_, two of which, _A. buchi_ (Goldenberg, 1873) and _A. hageni_ (Goldenberg, 1873), they considered _nomina dubia_ because the specimens are too poor to be identifiable. This leaves two potentially recognizable species in the genus: the type _A. voelkelianus_ Karsch, 1882, and _A. granulatus_ Fritsch, 1904. _A. granulatus_ supposedly has a little more granular cuticle and its opisthosoma is wider than long. The holotype of this species was lost (Dunlop & Rößler 2002), but has since been rediscovered in Dresden (J. Dunlop, pers. comm. 2009) but has yet to be redescribed. In the Sardinian specimen, the opisthosoma is slightly wider than long, but the differences in measurement are so slight that they fall into the margin of error expected by preservational artefacts. The granulation of the Sardinian specimen is certainly distinct but not greatly different from that shown by the type of _A. voelkelianus_ (Dunlop & Rößler 2002, figs. 1, 3). Until the holotype of _A. granulatus_ is redescribed, shown to differ from the genotype, and the Sardinian specimen can be compared with it, we consider our specimen to belong in _A. voelkelianus_.

Discussion

The biota of unit B of the San Giorgio basin is dominated by diverse plant remains and palynomorphs. Body fossils are represented by a unique arachnid, described herein, and a blattoid wing (Del Rio et al. 2002, and cited references). A trackway, assigned to _Salichnium (Saurichnites) beringi_ (Geinitz, 1885) by Fondi (1980), and other ichnofossils also occur. The latter are scarce and consist of tetrapod footprints, chiefly preserved as casts of manus-pes couples or isolated footprints belonging to three different morphotypes, and tiny arthropod tracks and trails (Pillola et al. 2004). The composition of this biota, together with the taphonomic and sedimentological features of Unit B, suggests a palustrine environment, which can be easily compared with similar deposits of other Western Mediterranean Variscan intracratonic basins. The peculiarity consists on the fact that, despite the paucity of faunal remains, the small San Giorgio basin is today the sole Upper Carboniferous fossiliferous locality in Sardinia.

The presence of _Anthracomartus voelkelianus_ in Upper Carboniferous rocks of Sardinia extends the range of this genus and, indeed, the order Trigonotarbida, to the western Mediterranean Variscan basins. Palaeobiogeographical affinities between south-west Sardinia and the northern Iberian (European) margin have been documented in several papers and point to a common tectono-sedimentary evolution from the early Cambrian to the early Tertiary. The occurrence of a terrestrial animal from the San Giorgio Basin assumes a particular value because, together with the ichnofossils, it provides evidence for the strong connections between the Corsica-Sardinian microplate and the mainland Iberian-central Europe domain, within the Euroamerican continental Realm, during the late Carboniferous.

Acknowledgments. We are indebted to Mr. Giovanni Manai from Cabras, the amateur who collected the specimen. We thank Jason Dunlop (Berlin) and Ronny Rößler (Chemnitz) for their helpful reviews. Funding for this work was provided by the Italian Government (PRIN 2007, research manager: A. Funedda) and Cagliari University, Project ex 60% G.L. Pillola Paleo biodiversità: strumento di base in biostatigrafia, in paleoecologia e nella valorizzazione dei beni culturali Geo-Paleontologici.
REFERENCES

Fritsch A. (1904) - Palaeozoische Arachniden. Privately published with support from the Imperial Academy, Vienna. Dt Eduard Gräf, Prague.

