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This article presents an unsupervised algorithm for
semantic annotation of morphological descriptions of
whole organisms. The algorithm is able to annotate plain
text descriptions with high accuracy at the clause level
by exploiting the corpus itself. In other words, the algo-
rithm does not need lexicons, syntactic parsers, training
examples, or annotation templates.The evaluation on two
real-life description collections in botany and paleontol-
ogy shows that the algorithm has the following desirable
features: (a) reduces/eliminates manual labor required
to compile dictionaries and prepare source documents;
(b) improves annotation coverage: the algorithm anno-
tates what appears in documents and is not limited by
predefined and often incomplete templates; (c) learns
clean and reusable concepts: the algorithm learns organ
names and character states that can be used to construct
reusable domain lexicons, as opposed to collection-
dependent patterns whose applicability is often limited to
a particular collection; (d) insensitive to collection size;
and (e) runs in linear time with respect to the number of
clauses to be annotated.

Introduction

The ever-increasing user expectation of digital libraries
and digital repositories calls for semantic-based access to
information at a finer granularity than the document level.
In the biosystematics domain, whole organisms are con-
stantly being studied and described, and descriptions are

Received July 2, 2009; revised September 1, 2009; accepted September 14,
2009

© 2009 ASIS&T • Published online 9 December 2009 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/asi.21246

being revised over time. Ongoing digitization and integra-
tion projects such as the Biodiversity Heritage Library (BHL;
Biodiversity Heritage Library, 2008) and the Encyclopedia of
Life (EOL; http://www.eol.org) add to the urgency of the need
for semantic-based access. As of June 30, 2009, BHL has
OCRed over 14 million pages of legacy literature. These doc-
uments are waiting to be parsed so the knowledge locked in
the pages will become more accessible. EOL, aiming to bring
to one place information about every known species, is plan-
ning to parse text documents to produce identification keys,
which represent a much more preferable, semantic-based
access to biosystematics knowledge than keyword-based
searches.

Biosystematics literature often contains names, classifi-
cations, and descriptions of whole organisms. Many bio-
diversity data in the deep Web are indexed by scientific
names. Named entity recognition algorithms for biodiversity
domains are being developed (Koning et al., 2005; Sautter
et al., 2007). Although scientific names can often serve as
an identifier for an organism, detailed morphological (also
called diagnostic) descriptions, however, may be even more
informative. These quite formalized sections describe the
characters (e.g., shape) and states (i.e., values of charac-
ters, e.g., oblong) of taxa. For example, leaf blades spatulate,
oblong, or obovate to oval describes the shape of leaves of a
plant.

Large sets of concepts and relationships annotated and
then extracted from the literature provide a better basis for
computer-aided knowledge discovery (e.g., data mining) than
text documents themselves. Domain-specific tools, such as
identification keys for biodiversity domains, may be created
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The original description of a plant consists of three clauses:
Clause 1: Stems 4–20 cm, scabrous, pubescent, hairs 2–4 times as long as broad.
Clause 2: Leaf blades narrowly linear to lanceolate, 1.5–5 cm×2–10 mm.
Clause 3: Petals dusty pink.

The annotated description of the plant:
<description>
<stem relief=“scabrous” pubescence=“pubescent” length=“4–20 cm”>stems 4–20 cm,
scabrous, pubescent, <hair proportionality=“2–4 times as long as broad”>hairs
2–4 times as long as broad. </hair> </stem>
<leaf_blade plane_shape=“narrowly linear to lanceolate” area=“1.5–5 cm×2–10 mm”>
leaf blades narrowly linear to lanceolate, 1.5–5 cm×2–10 mm. </leaf_blade>
<petal coating= “dusty” coloration= “pink” >petals dusty pink.</petal>
</description>

The original description of a brachiopod consists of four clauses:
Clause 1: Pseudodeltidium, chilidium commonly absent;
Clause 2: concentric ornament well developed, regular;
Clause 3: spines at low angle, rare on dorsal valve;
Clause 4: marginal ridges present.

The annotated description of the brachiopod:
<description>
<pseudodeltidium_and_chilidium count=“absent”> Pseudodeltidium, chilidium
commonly absent; </pseudodeltidium_and_chilidium>
<ornament spatial_pattern=“concentric; regular”> concentric ornament well
developed, regular; </ornament>
<spine orientation= “low angle” location= “rare on dorsal valve”>spines at low
angle, rare on dorsal valve; </spine>
<marginal_ridge count=“present”> marginal ridges present. </marginal_ridge>
</description>

FIG. 1. Examples of morphological descriptions showing clause and character levels of annotations.

in a semiautomated and more efficient manner with seman-
tically annotated morphological descriptions. Identification
keys comprise organism characters organized in a decision-
tree structure that can be used to identify a specimen. Keys
are highly intellectual but at the same time extremely labori-
ous to create, which is because all characters of all organisms
within the scope of the treatise must be collected and aligned.
The laborious part of the work may be designated to com-
puters if descriptions are semantically annotated. Semantic
annotation also makes it possible to compare descriptions of
organisms by their characters, as opposed to by keywords,
which may be included in a description by chance. A tool
with such capability would be especially helpful for entity
retrieval, as defined by Text Retrieval Conference (TREC,
n.d), for quality evaluation of manuscripts or self-published
Web pages, and for tracking revisions of descriptions over
time, to name a few applications. With short but otherwise
typical morphological descriptions of a plant and a brachio-
pod, Figure 1 illustrates the levels of annotation needed for
these applications. In the example, elements such as <stem>,
<leaf_blade>, and <pseudodeltidium_and_chilidium> rep-
resent clause-level annotations, which name the organ a
clause describes. Attributes such as relief, length, etc. are

character-level annotations, which describe characters of the
named organ. Element names are defined in the Categori-
cal Glossary for the Flora of North America Project (Kiger
& Porter, 2001) and a glossary published as part of the Trea-
tise on Invertebrate Paleontology (Moore, Teichert, Robison,
Kaesler, & Selden, 1952–2008). Attribute names are defined
in Phenotype and Trait Ontology (PATO; Phenotype and Trait
Ontology, 2006) and the Categorical Glossary for the Flora
of North America Project (Kiger & Porter, 2001). Attribute
values are taken directly from the original description.

There are a number of obstacles that need to be addressed
to annotate biosystematics descriptions to a desired accuracy
and granularity: (a) biosystematics includes a large number
of finely divided branches, and each branch employs a dif-
ferent vocabulary. For example, terms used to describe an
ant are different from those used for a brachiopod or a plant.
Even terms used to describe one plant family may differ from
those used for another. Figure 2 illustrates the term differ-
ences among 10 plant families in Flora of North America
(FNA; Flora of North America, 2006). Large dots in the
figure indicate family descriptions and small dots indicate
a genus or species description from the preceeding fam-
ily. The “valleys” between two family descriptions indicate
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FIG. 2. Counts of new domain terms when descriptions of ten families and
their inclusive genera/species from FNA are read sequentially.

that terms relevant to a family are used repeatedly in the
descriptions for the genera and species within that family.
The plot suggests that descriptions of the families contain
different terms, because new term counts are high for family
descriptions. (b) A good language processing infrastructure
for biosystematics domains does not exist. A comprehen-
sive, machine-readable dictionary or lexicon for a branch of
biosystematics is often difficult to find, let alone a dictionary
for the entire biosystematics domain. Although parsing tree
banks such as PennTreeBank (TreeBank, n.d) and seman-
tic networks such as WordNet (WordNet, n.d.) are effective
language processing tools for general domains (e.g., Wall
Street Journal articles), they do not provide good coverage for
biosystematics domains and their counterparts for biodiver-
sity domains do not exist. Figure 3 shows the parsing results
of some typical sentences found in biosystematics descrip-
tions using the Standford Parser, trained on PennTreeBank
(StanfordParser, n.d). In Figure 3 panel A, “flagellomere,” a
noun, is mistaken for a verb (VBP), and “apical,” an adjec-
tive, is mistaken for a noun (NNP); in Figure 3 panel B, the
adjective phrase “prostrate to erect” is mistaken for a verb
phrase; and in Figure 3 panel C, “4 spiralled cells,” a noun
phrase (NP), is split and parsed incorrectly. The results show
that incorrect parts of speech are assigned and wrong attach-
ments are made on those seemingly simple sentences. And
(c) biosystematics descriptions are not written in standard
English syntax, and there is not a standard syntax shared by
authors from different branches of biosystematics.

This article presents an unsupervised machine learning
approach that learns by exploiting the document content
itself. The evaluation results suggest that domain lexicons and
syntactic parsers may not be needed for clause-level annota-
tion, as the document content itself holds the answers to most
questions the learning algorithm needs to ask. Additionally,
what the learning algorithm discovers from the documents

FIG. 3. Parsing examples of typical biosystematics clauses using the
Stanford Parser.

may be used to construct domain lexicons or to enrich exist-
ing lexicons, such as WordNet, which can be very useful for
other language processing applications of the domains.

This article is organized as follows. After a brief review
of different approaches to semantic annotation, the unsuper-
vised machine learning algorithm is introduced, where the
emphasis is on how the algorithm exploits the content of a cor-
pus to perform various subtasks of annotation. Performance
evaluation of the algorithm on two real-life corpora from
the domains of botany and paleontology are then reported,
following which a discussion of the experimental results
is provided, illustrating the strength and limitations of the
algorithm. The article concludes with a discussion of future
research directions.

Review of Relevant Literature

The research reported in this article is closely related
to information extraction. Although they are both based on
recognizing the semantic role a word plays, a typical task
of information extraction is to fill out a template with key
facts extracted from textual documents, while the goal of
this research is to annotate complete descriptions of organ-
isms. Since the mid-1980s, a great number of works in
information extraction have been published, for example,
Soderland (1999), Riloff and Jones (1999), Rokach, Romano,
and Maimon (2008), and Rozenfeld and Feldman (2008), to
name a few. While early works relied on hand-crafted rules,
from the mid-1990s onward, machine learning became the
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dominant approach to learn extraction rules and to evalu-
ate extracted results. As supervised machine learning needs
training examples, which can be costly and time consum-
ing to prepare, unsupervised (Riloff & Jones, 1999) or
self-supervised methods (Rozenfeld & Feldman, 2008) have
become more attractive under certain conditions. Such con-
ditions include high data redundancy in extraction targets,
relatively simple extraction targets (e.g., a company acquires
another company), and the availability of large lexicons of the
extraction domain, which provide semantically related terms
and makes it possible to propagate the learning. For exam-
ple, WordNet is a large-scale lexicon often used in supervised
or unsupervised information extraction in general domains
(e.g., Rozenfeld & Feldman, 2008). Probst et al. (2007) and
Raju, Pingali, and Varma (2009) are the most similar to the
work reported in this article in that they used semisuper-
vised or unsupervised methods to extract product attributes
from incomplete sentences without a predefined template.
The differences include that they did not distinguish a part
of a product (e.g., an LCD monitor in a cell phone) from
a character of a product (e.g., the color[s] of a cell phone),
and that they assumed that product attributes were explicitely
mentioned in a description and when they were not, lookup
lists were provided to the algorithm. Information extraction
has also found its application in scientific domains, notably,
biomedical domains. Although many issues in information
extraction are common to all domains, different domains
often face some special challenges. For example, recognizing
negations in medical narrative reports is especially important
to determine if a patient has a certain medical condition or
not (Rokach, Romano, & Maimon, 2008). Text in the domain
this article focuses on is marked by its heterogeneous termi-
nologies, its deviated syntax from standard English, and its
lack of related language processing utilities (e.g., lexicons).
On the other hand, its syntax is much simpler than standard
English syntax; for example, coreference resolution is sel-
dom needed here. Below is a review of recent works related
to biosystematics descriptions.

Research in Biosystematics Domains by Others

Lydon et al. (2003) shed light on the heterogenity of
morphological descriptions. To develop a semantic markup
system, Lydon and colleagues manually compared the
descriptions of the same five species from six different floras
and found that only 9% of the information across the source
floras was exactly the same. Over 55% of the information was
from a single flora, and around 1% of the information from
different floras was contradictory. It is important to keep this
variation in mind when designing a portable semantic annota-
tion system that works across not only document collections
of a domain but also domains of biodiversity, such as botany,
zoology, and paleontology.

Research on semantic annotation of morphological
descriptions has taken one of three approaches: the syntactic
parsing approach, the rule-based approach, or the machine
learning approach. Earlier projects (Taylor, 1995; Vanel,

2004) applied syntactic parsing methods to extract informa-
tion from text to populate relational databases or to generate
XML documents. While probabilistic parsing techniques
have been around for the past decade, training examples (e.g.,
Penn TreeBank) and lexicons, which are necessary for suc-
cessful parsing, were mainly developed for general domains,
such as Wall Street Journal articles. As shown earlier, such
parsers cannot be directly applied to biosystematics domains.
Lacking these essential tools, the above-mentioned projects
manually built small-scale parsers by examining the syntax
and terms used in source plant descriptions. No scientific
evaluation of system performance was reported by these stud-
ies. Although manually building syntactic parsers (including
lexicon and grammar rules) on a collection by collection
basis may attain high performance, it does not seem to be
an efficient approach.

An example of a rule-based annotation system is Gold-
enGATE (Sautter et al., 2006), which is a specialized XML
editor for biosystematics literature. GoldenGATE allows the
user to invoke different built-in functions to paginate docu-
ments, tag taxonomic names, and tag paragraphs. The newest
version supports annotation of citations. The end user, how-
ever, is free to come up with regular expression rules to
annotate any aspects of the descriptions to any detailed
level. While very flexible in accommodating documents from
different collections/domains, GoldenGATE is a highly inter-
active system, requiring significant human intervention (e.g.,
correcting errors, tuning regular expression rules). The reg-
ular expression rules are sensitive to text variations and the
need for the user to come up with such rules can limit Golden-
GATE’s application. In addition, how the rules crafted for one
(set of) document(s) work on another one is unpredictable,
hence the effort to fine tune the rules is largely wasted.

Similar to GoldenGATE, MultiFlora (Wood et al., 2004)
adopted the General Architecture for Text Engineering
(GATE; developed by the NLP research group at the Uni-
versity of Sheffield) for keyword searches and regular
expression-pattern matching, but it also used an ontology,
manually created by examining the selected descriptions
from different floras (Lydon et al., 2003), and a hand-crafted
gazetteer as a lookup list to link the extracted character
states (e.g., “oblong”) with one of the 134 identified char-
acters (e.g., “shape”). While the work of Wood, Lydon,
and colleagues shows that the descriptions from different
sources are complementary, the authors acknowledge the
“UnknownPlantParts” problem when reapplying the hand-
crafted system to a new collection. The evaluation of the
system on 18 species descriptions showed a recall and a
precision in the range of mid 60 to mid 70. The research
presented in this article may be useful to automate the man-
ual knowledge engineering procedure to some degree so that
the ontology-based approach can be better scaled up with
larger data sets.

It has been shown that it is possible to learn regular expres-
sion patterns automatically using a supervised machine learn-
ing approach. Tang and Heidorn (2007) adapted Soderland’s
(1999) supervised learning algorithm to extract leaf shape,
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size, color, arrangement, and fruit shape characters from
1,600 of the Flora of North America species descriptions to
fill out a predefined template, and they reported 30%–100%
accuracy, depending on characters. Extracted information,
even imperfect, was shown to increase user satisfaction with
a full-text information retrieval system and improve user
performance in specimen identification tasks.

Previous Research by the Authors

We (Cui et al., 2002) used automatic text classification
algorithms, naïve Bayesian, and support vector machines,
to annotate taxonomic descriptions at the paragraph level
with satisfactory results (accuracy = 70%–100%). The goal
was to identify types of paragraphs (nomenclature, descrip-
tion, discussion, distribution, references, etc.) in a taxonomic
description. In another work, we (Cui and Heidorn, 2007)
compared a homemade, association rule-based algorithm
with naïve Bayesian and Support Vector Machine classi-
fiers on a clause-level annotation in description paragraphs.
Although the performance was good, both systems required
an XML schema and 100s to over 1,000 annotated descrip-
tions as training examples. Like Wood et al. (2004), our XML
schema for clause-level markup was incomplete and some
clauses had to be marked as “unknown features”.

In summary, syntactic parsing and rule-based systems may
be able to achieve high performance, but they need a sig-
nificant manual knowledge engineering effort and can be
collection or domain sensitive. Supervised machine learn-
ing has the advantage of better portability across collections
and domains, but it requires a large number of training exam-
ples for each collection/domain, which could be difficult to
obtain. The three approaches reviewed above have one thing
in common: they take a top-down approach, in which some
form of knowledge structure, whether lexicons, grammar
rules, information extraction templates, or XML schemas,
is predefined. The task of semantic annotation is essentially
a task of fitting the textual descriptions in question into
the predefined structure. Applying a top-down approach in
a domain that is quite new to language processing could
be problematic: lacking a well-defined, comprehensive, and
machine-readable knowledge structure causes problems such
as “UnknownPlantParts.”

The approach presented in this article is a bottom-up
approach, materialized by an unsupervised learning algo-
rithm. Reported in the short paper of Cui (2008) is a
preliminary version of the algorithm, which has since been
expanded, further tested, and included as a key module (i.e.,
the coreBootstrapping module) in the complete algorithm
reported here.

The Bootstrapping-Based Unsupervised Machine
Learning Algorithm

The unsupervised machine learning algorithm looks
mainly into the content of documents for guidance. The
only external resource the algorithm accesses is WordNet.

Since WordNet is readily available and has been shown
to be useful for many language processing applications,
our algorithm queries it occasionally when needed informa-
tion cannot be obtained from the documents. The research
question to be answered is, how much of the information
needed for the algorithm to annotate morphological descrip-
tions can be harvested from the descriptions themselves
programmatically?

Bootstrapping is a type of unsupervised learning proce-
dure that starts with a small set of “seeds” (i.e., known
items, for example, organ names). The learning is achieved
by using the seeds to iteratively discover new items (Riloff &
Jones, 1999). Bootstrapping appears to be very effective
with biosystematics literature, because the latter contains
numerous concepts (organ names, characters, and modifiers)
connected by relatively simple syntactic structures repeated
under different contexts.

Doing away with training examples, the unsupervised
algorithm employs various bootstrapping procedures to dis-
cover basic elements needed for semantic annotation from
raw text documents. For clause-level annotation, which is
reported in this article, the unsupervised algorithm learns
organ names, character states, modifiers, and boundary
words. These terms are defined below.

Definitions

The usage of some terms is clarified in this section. The
descriptions of organisms comprise clauses, or sentences ter-
minated by a colon, a semicolon, or a period. Most clauses
do not have a verb, for example “basal leaves absent.” In
taxonomic documents, a typical clause comprises a subject
(e.g., “basal leaves”) and its descriptors (e.g., “absent”): The
subject is typically a noun phrase, comprising a modifier or
“m” word (e.g., “basal”) and an organ name or “n” word
(e.g., “leaves”), while the descriptor could start with any part
of speech, such as adjectives or nouns. The word that starts
a descriptor part is called a boundary word or “b” word. In
the above example, “absent” is a “b” word. “length” in “resin
gland length often much more than twice width” is another
example of a “b” word. When the semantic role “n”, “b” or
“m” of a word is determined by the algorithm, the word is
tagged with its role. Note that it is possible for a word to
have multiple roles in different contexts. When words in a
clause are sufficiently tagged, the algorithm is able to anno-
tate the clause with a semantic tag (telling the aboutness of
the clause), which includes an optional modifier and a head
noun (typically an organ name). To avoid confusion, the tag
that indicates the role a word plays is called tag, while the
tag assigned to a clause is called annotation.

Boundary words are often values of characters (or “char-
acter states” in cladistic terminology), describing the features
of an organ. For example, “elongated” in “leaves elongated”
is a value (state) of the character “shape.” Some boundary
words are not character states, for example, “usually” in
“roots usually flattened” is not a character state.
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While a modifier always appears before an organ name,
a character state may appear before or after an organ name.
For example “elongated” in “elongated leaves” is a character
state and not a modifier, even though it appears before an
organ “leaves.” Sometimes the role of a word is context-
dependent. For example “basal” in “basal leaves elongated”
is a modifier because it narrows the scope of the subject to a
subset of leaves (i.e., basal leaves), whereas “basal” in “leaves
basal” is a boundary word and character state (i.e., position)
because it states that all leaves are located at the base of the
stem.

Note that these roles may be related to the part of speech of
a word, but they are not parts of speech: a noun for example
may be the name of an organ, but it may also be a modifier,
for example “leaf” in “leaf blade” is a modifier.

Algorithm Overview

In clause-level annotation, the unsupervised algorithm
determines the roles of the words in a clause until it gathers
sufficient information to annotate a clause with a semantic
tag. Examples of clause-level annotations are presented in
Figure 1.

An overview of the algorithm is presented in Figure 4.
Pseudocode of the modules marked with an * are presented
in the Appendix. Modules marked with an “o” are optional
depending on the characteristics of a source collection. Mod-
ules denoted with an “F” are used in annotating Flora of
North America descriptions, while those with a “T” are used

FIG. 4. Overview of the unsupervised learning algorithm.

in annotating the Treatise of Invertebrate Paleontology Part
H in the experiments reported in this article.

The initiation step includes reading source descriptions
from a directory, segmenting a description into clauses, and
normalizing the text.A description is segmented by clause ter-
mination punctuation marks such as semicolon (;), colon(:),
or period (.). As periods can be used for many other pur-
poses, a sentence splitter module written byYona (2002) was
modified and used to avoid false segmentations. Specifically,
periods following a single capital letter (e.g., as in a person’s
name J. Smith), in numbers (e.g., 7.8), and in abbreviated
words (e.g., ca., var., diam., sq.) were ignored. The first two
cases can be easily dealt with using regular expressions. As
there were just a few examples of the third cases in morpho-
logical descriptions, the abbreviated words were hardcoded
in the sentence splitter module, but they could be identified
programmatically by finding all words that always appear
before a period in a document collection. Segmented clauses
were labeled with the name of their source files and with their
location in the source file; for example, clause 111.txt-3 was
the third clause in the file 111.txt.

Text normalization converts all uppercase letters to low-
ercase and standardizes the usage of hyphens. Unnecessary
hyphens, for example, hyphens added to break a word at the
end of a line, should be removed. Sometimes when raw text
is extracted from a PDF or Word document, extra hyphens
that are not in the original text may be introduced. Table 1
shows different ways a hyphen was embedded in the text after
the text of Flora of North America volume 19 (FNA v19)
was extracted from a Word document. To decide if a hyphen
should be kept or removed, an algorithm was designed to
connect as many pieces as possible to form a legitimate word
and keep the hyphens connecting legitimate words intact.
The algorithm checks against the corpus itself rather than a
dictionary to decide if a string is a legitimate word. Because
of the highly repetitive usage of domain terms in descriptions,
the normal form of a broken word seems always locatable
in the corpus. Details of this dehyphenization function are
presented in the Appendix.

The pre-bootstrapping modules prepare the stage for the
core bootstrapping modules to learn organ names, modi-
fiers, and boundary words. Besides loading a number of
finite sets of tokens such as stop words, prepositions, num-
bers, common prefixes (e.g., ob-, sub-, bi-), and suffixes
(e.g., -ous) in biosystematics, there are three other important
modules:

• loadKnowledgeBase module loads known words and their
semantic roles if such knowledge is available. In the experi-
ments reported here, no prior knowledge was loaded.

• learnSeedNouns module learns a set of plural and singular
nouns from a document collection automatically, using some
simple syntactic heuristics, one of which is: a word is a noun
if its plural and singular forms are seen in the collection, but
not its verb forms. For example, if “stem” and “stems” are
seen in the collection but “stemming” or “stemmed” is not,
then “stem” is believed to be a singular noun with a plural
form “stems.” Learned seed nouns are assumed to be organ
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TABLE 1. Usage of hyphens in extracted descriptions from FNA v19.

Usage Hyphenated word(s) [standardized format] Remark

Connect parts of a word peti-oles [petioles] Parts connected are not legitimate words.
proxi-malmost [proximalmost] Connect all parts to form a legitimate word.
paniculi-form [paniculiform] One part connected is a legitimate word. Connect all parts to form

a longer legitimate word.
pan-nose [pannose] All parts connected are legitimate words. Connect all parts to form

a longer legitimate word.

Connect multiple words red-brown [red-brown] Two words. Keep the hyphen.
white-villous-ciliate [white-vilous-ciliate] Three words. Keep the hyphens.

Hybrid usages paniculi-form-scorpioid [paniculiform-scorpioid] Different usages in one string. Remove the first but keep the second
hyphen so that each word in the resultant string is legitimate and
as long as possible.

names (i.e., “n” words), even though sometimes they are not.
Details of this module are presented in the Appendix.

• patternBasedAnnotation module annotates clauses with dis-
tinct patterns, for example, in FNA, “x=” or “2n=” at the
beginning of a clause is a sure indication that the clause is
about chromosome counts of an organism. Some collections
do not contain such patterns, for example, the Treatise. Dif-
ferent patterns are found in other collections, for example, in
Flora of China, “Fl.” stands for “flowering time.” Descrip-
tions of ants contain patterns such as “HL,” standing for “head
length.” Patterns like these are most reliable cues for anno-
tating some clauses; therefore, they should be applied first to
move these clauses out of the way of the bootstrapping mod-
ules. The use of these patterns in formal publications such
as FNA are typically described in Contributor’s Guides. The
FNA Guide was used to collect the patterns for FNAv19 for
the experiments.

The core bootstrapping modules exploit a simple syn-
tactic pattern seen in biosystematics documents: a simple
clause starts with a pattern of “n b”—a subject followed by
a boundary word.

• coreBootstrapping learns by making inferences between “n”
words and “b” words. The following examples illustrate the
learning process: given a clause “stems few,” if “stems” is
known to be an organ (i.e., “n,” learned by the learnSeedNouns
module), then “few” is a boundary (“b”) word. Because now
“few” is known to be a “b,” given a clause “cauline leaves few,”
“cauline leaves” is then inferred to be the subject (i.e., “leaves”
is the organ [“n”], and “cauline” is the modifier [“m”]). Sim-
ilarly, the algorithm can in the future infer that “heads” and
“branches” are organs when it finds clauses such as “heads
few” and “branches few.” Now that the module has learned
that “stems,” “leaves,” “heads,” and “branches” are “n,” it can
discover more “b” words by searching for clauses starting
with these “n” words, for example, the clause “heads usually
crowded” tells it that “usually” is a “b” word. Iterations like
these go on until no new discoveries are made. At that point,
this learning module terminates. Not all occurrences of a “b”
or an “n” would warrant an inference. See the details of this
module in the Appendix for the conditions under which an
inference may be safely made.An early version of this module
has been reported in Cui (2008).

• leadWordBootstrapping exploits the fact that the same
organ of different organisms may have different descriptors

(i.e., followed by different boundary words). For example,
when seeing “stigmatic scar basal” and “stigmatic scar api-
cal” and knowing “scar” is an “n,” the algorithm may infer
that “basal” and “apical” are two different “b” words. This
module looks for such cues only at the beginning of a clause
and helps to learn new words and roles that the coreBoot-
strapping module does not learn. Details of this module are
presented in the Appendix.

• unknownWordsBootstrapping uses the fact that plural nouns
are more often organ names (“n”) than modifiers (“m”) to
infer that the word before a plural noun is a modifier, while
the word after a plural noun is a boundary word. This module
looks for such cues anywhere in clauses to tag the remaining
unknown words. Details of this module are presented in the
Appendix.

Learning about the roles different words play, the core
modules use the subject as the tag to annotate each clause.
The accurate role learning lays the groundwork for a set of
secondary bootstrapping modules to deal with more complex
language features in the biosystematics literature:

• adjectiveSubjectsBootstrapping deals with clauses that use an
adjective for a noun as a subject, for example, “inner scarious”
which should really be “inner [phyllaries] scarious” if its con-
text were taken into account. In another context, “inner” may
mean inner apex, inner floret, inner cypsela, etc. The module
first identifies such usage of adjectives and then determines
the organs they modify by tracing back to the last organ
(i.e., parent organ) explicitly mentioned in the text. The
module identifies such adjectives by exploiting the pattern
in which a boundary word (e.g., “scarious”) immediately
follows a modifier (e.g., “inner”) without an organ name
in between. Details of this module are presented in the
Appendix.

• compoundSubjectsBootstrapping deals with clauses that use
conjunctions such as “and” and “or” to form a compound
subject, for example, “stems, distal branches, and phyllaries
gland-dotted.” If stems, branches, and phyllaries are already
tagged as an “n” and “gland-dotted” as a “b,” then the module
simply tags the clause as <stems and distal branches and phyl-
laries>. Otherwise, if the role of, say, branches is unknown,
then the module would make a new inference that “branches”
is an organ, just like “stems” and “phyllaries,” because in
English, “and” and “or” are used only to connect compara-
ble tokens. Similarly, if all but the role of “gland-dotted” is
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known, the module can safely infer that “gland-dotted” is a
boundary word.

• Because new discoveries may have been made by the above-
mentioned modules, the wrapupmarkup module then uses the
new knowledge to try to annotate the remaining unannotated
clauses.

All bootstrapping modules carry out two functions simul-
taneously: one is to assign an appropriate role (organ name,
modifier, or boundary) to an unknown word; the other is to
annotate a clause if sufficient information is available. When-
ever a noun is discovered, its singular and plural forms are
added to the algorithm’s knowledge base. Whenever a word,
a noun or a boundary word, is learned, its prefixed or suf-
fixed forms are also recorded. For example, when “acute”
becomes known as a “b,” “subacute” is tagged as a “b” as
well; when “shrubs” becomes known as an “n,” “subshrubs”
is also tagged as an “n.” A list of applicable prefixes and
suffixes are loaded in the pre-bootstrapping stage.

Note that all bootstrapping modules run in iterations. New
discoveries made at one point are immediately reflected in
the algorithm’s knowledge base and will affect the next deci-
sion point. Cases that cannot be handled by one iteration
with confidence may become taggable in the next iteration
when sufficient knowledge becomes available. Only reliable
cues are used to make inferences, and the cues are applied
in descending order of reliability, using the most reliable
cues first to avoid introducing errors at early stages of iter-
ation. This principle is applied throughout the algorithm.
For example, patternBasedAnnotation is run before boot-
strapping modules because those patterns are fixed and will
not result in errors. The core bootstrapping modules are run
before the secondary bootstrapping modules because the for-
mer deals with simpler clause structures, which contain less
noise. Within coreBootstrapping, bootstrapping on clauses
with plural nouns occurs before those with singular nouns,
because plural nouns seldom play the role of modifier, while
singular nouns may modify a head noun, or be head nouns
themselves. Thus, chance of a wrong decision on plural nouns
is much lower than on singular nouns. The order in which dif-
ferent patterns are checked in the coreBootstrapping module
reflects the same principle. The implementation of this prin-
ciple throughout the algorithm reduces errors and improves
the accuracy of the annotation.

Upon completion of secondary bootstrapping, the machine
should have learned enough about the words to annotate
directly the remaining clauses. These clauses possess inter-
esting language features that could confuse the algorithm if
they were processed earlier:

• Clauses that are really phrases. For example, “biconvex,
unisulcate valves;” Here, the head noun of the subject is
the last word in the clause. These clauses are identified and
annotated with the head noun by phraseClauseAnnotation
module.

• Clauses that share a subject with an earlier clause. For
example, “leaves cauline; sessile;” Here, the second clause
“sessile’s” subject is the subject of the first clause, “leaves.”

These clauses are identified and annotated with “ditto” by
dittoAnnotation module.

• Clauses whose subject is either a pronoun or a character, as
opposed to an organ name. For example, “maximum width at
hinge line.” These clauses are identified and annotated with
“ditto” (as the subject of this clause is the last organ explicitly
mentioned) by pronounCharactersAnnotation module.

• Clauses in which a comma is used to mean “and.” For exam-
ple, “adductor scars, brachial ridges weakly marked,” which is
semantically equivalent to “adductor scars and brachial ridges
weakly marked,” These clauses are identified and annotated
with the compound subject (i.e., “adductor scars and brachial
ridges”) by commaAsAndAnnotation.

• Clauses in which character descriptors of an organ appear
before the organ name. For example, “small cicatrix, rugae
irregular, covering corpus,” in which character state “small”
describes the size of cicatrix and rugae but is used as if it were a
modifier. The module refineModifiers attempts to distinguish
these character states from true modifiers such as “ventral” in
“ventral valve.” If a word has only been tagged as “b,” then
the word is removed from a modifier. If a word has only been
tagged as “m,” then the word is kept as a modifier. When a
word has been tagged as both “b” and “m,” the module counts
the number of times the word appears immediately before an
“n” and the number of times the word appears after an “n.” If
the former is two times more than the later, then the word is
kept as a modifier.

• The last module in post-bootstrapping is normalizeAnnota-
tions, which converts all plural nouns in clause annotations
(including an optional modifier and a head noun) into their
singular form. This is done to avoid counting the same organ
twice when determining the different organs described in a
collection.

Post-bootstrapping modules act upon the role tags learned
in the core and secondary bootstrapping to refine the anno-
tations. Although there is no learning involved in these
procedures, they are important in resolving cases that do
not follow the simple patterns assumed by the bootstrapping
modules. The bootstrapping modules assume a clause has
an “m-n-b” pattern and try to recognize such patterns at the
beginning of the clauses. Although this is the most frequent
pattern in many morphological descriptions and provides reli-
able and recognizable cues, other patterns such as “b-m-n,”
“b, b-m-n-b,” “b-b-b” do exist. Again, the algorithm learns
from the simpler pattern first, and then applies what it has
learned to other, more involved patterns. The “b-m-n” pat-
tern is dealt with by phraseClauseAnnotation; “b, b-m-n-b”
is dealt with by commaAsAndAnnotation; “b-b-b” is dealt
with by pronounCharactersAnnotation and dittoAnnotation;
and last, refineModifiers takes “b” words away from clause
annotations. Taking bootstrapping and post-bootstrapping
procedures as a whole, the simplified assumption on the syn-
tax of descriptive clauses (i.e., “m-n-b” in lead words of a
clause) is, in effect, relaxed.

Not all document collections will use all of the modules
because of variations in community practices. For example,
“adjectives as subjects” does not appear in the Treatise but
does appear in Flora of North America, while “comma
used as ‘and”’ does not appear in Flora of North America,
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TABLE 2. Basic statistics of FNA v19 and Treatise Part H.

FNA v19 Treatise Part H
Asteraceae Brachiopod

Number of descriptions 942 2037
Number of clauses 12503 9755
Number of unique words 1957 2568
Number of organ names 243 492
Number of nonorgan name modifiers 53 68
Number of character states 1541 1353
Number of nondomain specific wordsa "20 "655

aNumber of nondomain specific words approximately equal to (total
unique word – organ names – modifiers – character states) because some
words could be modifiers and character states at the same time.

but appears in the Treatise. All modules can be turned on or
off depending on the features of a collection.

Experiments

Data

The unsupervised annotation algorithm was evaluated on
plant descriptions extracted fromVolume 19 of Flora of North
America (FNA v19 for short) and fossil brachiopod descrip-
tions from Part H of Treatise on Invertebrate Paleontology
(Moore et al., 1952–2008; Treatise Part H for short). FNA
v19 contains 942 descriptions, while Treatise Part H contains
2,037 descriptions. To evaluate the robustness of the algo-
rithm, it is important to test the algorithm against descriptions
of different biosystematics subdomains. Table 2 shows basic
statistics of the two volumes.

Method

1. Raw text was extracted from FNA v19 from a Word docu-
ment.A homemade parser was used to extract descriptions
from the text.

2. Descriptions of Treatise Part H were obtained from the
author of a parser reported in Curry and Connor (2008).

3. The algorithm was executed on FNA v19 and Treatise
Part H collection independently. The performance was
recorded.

4. To study the effect of collection size on the performance,
a learning curve was obtained for FNA v19 and Treatise
Part H, respectively, by applying the following procedure:
a. Randomly select descriptions from the data set in ques-

tion to form subsets of descriptions of different sizes
at an interval of about 500 clauses. By step 500, 24
subsets were randomly generated from FNA v19 and
18 were generated from Treatise Part H.

b. Execute the algorithm on each subset and record the
performance.

c. Repeat step a and b three times and obtain the average
performance on subsets of the same size.

d. Use the average performances to plot the learning
curve.

The algorithm was implemented in Perl and Java. The
algorithm was run on a Gateway computer with Intel Core 2
Quad CPU, 2.40 GHz, and 1 GB RAM.

Performance was evaluated by comparing annotations
made by the algorithm to those made by humans. Two
benchmarks were prepared manually by the first author in
consultation with the co-authors (who are a botanist/editor
of FNA and a paleontologist/editor of the Treatise respec-
tively) and other domain experts acknowledged at the end
of the article. Clauses that may have different interpretations
were presented to the domain experts for the correct or most
likely interpretations. One benchmark was for FNA v19 and
the other was for Treatise Part H.

The performance of the algorithm on the clause-level
annotation was measured by accuracy. The accuracies of the
learned modifiers, head nouns, and the annotations as a whole
are reported separately.

accuracy = clauses annotated correctly/total clauses

The performance of the algorithm in learning word seman-
tic roles was measured by precision and recall. Precision and
recall of learned organ names were based on all organ names
mentioned in the descriptions, no matter if they were the sub-
ject of a clause or not. The precision and recall of learned
modifiers are reported for Treatise Part H as well, which
evaluates the effect of refineModifiers module on distinguish-
ing modifiers from character values. Because “boundary”
is not really a semantic role, measuring its precision and
recall would be meaningless. However, since boundary words
should ideally be descriptors (i.e., characters or character
states), measuring the percentage of learned boundary words
that are really organ names is useful.

Even though character state learning was not the focus
of the clause-level annotation, measurements were taken to
evaluate the potential of the algorithm in learning character
states, which are valuable for annotation at a finer granu-
larity, i.e., character-level annotation. The measurements are
(a) what portion of the learned boundary words are character
states (i.e., precision) and (b) what portion of all character
states are learned (i.e., recall).

To evaluate the effect of WordNet on performance, the
following measurements were also taken: (a) the number of
words posted to WordNet for a part of speech, (b) the number
of times WordNet returned any result, and (c) the num-
ber of times WordNet returned multiple parts of speech for
a word.

Results

Table 3 shows the algorithm’s performance on the whole
sets, of FNA v19 and Treatise Part H descriptions.

The experimental results on subsets of FNA v19 and Trea-
tise Part H are reported side by side. Starting from subset one,
which contains around 500 clauses, each subsequent subset
has around 500 more clauses than the previous one. This set
of results answers the question about the optimal size of a
corpus for the algorithm to achieve optimal performance.

Figure 5 shows the sizes of the subsets, Figure 6 shows
annotation accuracies of the algorithm on subsets of various
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TABLE 3. Performance of the algorithm on the whole sets of FNA v19
and Treatise Part H.

FNA v19 Treatise Part H

Accuracy on modifiers 0.9773 0.9420
Accuracy on head nouns 0.9897 0.9705
Accuracy on annotation 0.9708 0.9232

as a whole
Precision on organ names 0.9187 0.8876
Recall on organ names 0.9300 0.7866
Percentage of boundary 0.0000 0.0027

words that are organs
Percentage of boundary 0.9766 0.9235

words that are states
Recall on states 0.7573 0.4996
Number of total learned 1722 1819

words
Number of WordNet 215 529

requests made
Number of result received 37 or 147 or

(37/1722 = 2.15%) (147/1819 = 8.08%)
Number of “multiple parts 17 75

of speech”
Run time in minutes 45.27 71.63

sizes, Figure 7 shows the compositions of learned boundary
words from the subsets, Figure 8 shows the WordNet access
data, and Figure 9 shows the times taken for the algorithm to
process the subsets.

FIG. 5. Sizes of the subcollections of FNA v19 and Treatise Part H.

Discussions

Discussion of Annotation Performance on the Whole Sets
of FNA v19 and Treatise Part H

The experimental results (Table 3) show that the algo-
rithm’s performance on clause-level annotation is approach-
ing human performance on FNA v19, with the accuracy of
annotation as a whole exceeding 97%. On Treatise Part H,
the clause-level annotation is quite accurate, with an accu-
racy on head nouns exceeding 97% and overall accuracy of
92%. The poorer performance on Treatise Part H is largely
due to the algorithm’s inability to distinguish some of the
character states from modifiers, for example, “flaring,” which
appears in “flaring teeth,” “flaring socket plates,” “flaring
dental plates,” “flaring socket ridges,” etc. Although a char-
acter state (a shape), because the term consistently appears
before an organ name throughout the corpus, as opposed
to being part of the descriptors following an organ name
(e.g., “teeth flaring”), the algorithm mistook it for a modi-
fier. Lower modifier accuracy causes lower overall annotation
accuracy.

When extending the search scope beyond the subject
of clauses, the algorithm’s performance on learning organ
names drops somewhat, with a 92% precision and 93% recall
on the FNA v19 collection and an 89% precision and 79%
recall on the Treatise Part H collection. The false organ names
learned from FNA v19 and Treatise Part H are shown in
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FIG. 6. Annotation accuracies of the algorithm on the subcollections of FNA v19 and Treatise Part H.

Table 4. Most errors were introduced directly or indirectly
by the learnSeedNouns module, which assumes the nouns it
learned are all organ names. For FNA v19, although words
such as “combination” and “combinations” are nouns, they
are not organ names. “bilateral” and “lateral” were tagged as
organ names because “laterals” was seen in a description
as a subject, so the algorithm inferred that the singular form
“lateral” is also an organ, and that “bi-lateral” should have the
same role as “lateral” because the prefix “bi-” should not alter
the role the word plays. Because those false organs rarely
appeared in or near the subject of a clause, they affected the
annotation performance only slightly and were not detected
by the coreBootstrapping module. If there were a clause like
“stylopodia lateral” in the collection, these two errors may
have been corrected by the coreBootstrapping module. When
the module sees a phrase that forms a “ps” pattern (“stylopo-
dia” is plural and “lateral” is singular), the module would
change the role of “lateral” from a singular organ name (s) to
a boundary word (b). learnSeedNouns also explains many of
the errors seen in Treatise Part H. Words such as “angle,”
“angles,” “degree,” and “degrees” were correctly identi-
fied as nouns, but they were not organ names. There were

also more verbs in Treatise Part H than in FNA v19. Most
verbs were correctly treated as boundary words, but a few,
for example “breaks,” “dominates,” “reaches,” and “starts,”
were mistaken for plural nouns. In the Treatise descriptions,
more non-domain specific words were seen in clauses, such
as “characters as for family/subfamily” or “poorly known
and some key characteristics not recorded,” which, strictly
speaking, are not morphological descriptions. All of these
contributed to the lower performance on Treatise Part H.

Note that all the nouns mistaken for organ names are
common English words, as opposed to domain terms. This
suggests a possible fix to the problem: Use a general corpus
such as Brown Corpus (Francis & Kucera, 1979) as a filter
to identify and remove nouns that are not subjects of clauses.
The non-subject condition may be necessary because words
such as “leaves” should be considered both as a common
English word and a domain term.

Boundary words learned from FNA v19 are almost exclu-
sively words representing character states, accounting for
97.66% of boundary words. By identifying the boundary
words alone, the unsupervised algorithm uncovers 75.73%
of all words representing character states mentioned in the
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FIG. 7. Compositions of learned boundary words from the subcollections of FNA v19 and Treatise Part H.

description collection. For Treatise Part H, 92.35% of the
boundary words are words representing character states, and
the unsupervised algorithm uncovers 49.96% of all words
representing character states mentioned in the description
collection. Boundary words that are not related to charac-
ter states are shown in Table 5. Note that adverbs such as
“much” and “rarely” are considered to represent a charac-
ter state because they are often used to modify the degree
of a state, as in, for example, “much-branched.” The overlap
between boundary words and character states suggests that
the boundary words may be used directly in character-level
annotation, in which each character state should be tagged
and associated with its character, its organ and taxon. This
may be a feasible approach because few organ names were
mistaken for boundary words.

The unsupervised algorithm determined the roles for
1,722 of the total 1,957 words (or 88%) in FNA v19. The
algorithm needed to consult WordNet (v 2.1) on 215 (or
215/1722 = 12%) words, but (215 − 37)/215 = 83% of those
requests generated no return because the word was not in
WordNet. Of the 17% (or 37) successful requests, almost
half (17/37 = 46%) returned multiple parts of speech that
needed to be resolved by the algorithm. On Treatise Part H,
the algorithm determined the roles for 1,819 of the total 2,568
words (or 71%). The algorithm needed to consult WordNet on

529 (or 529/1819 = 29%) words, (529 − 147)/529 = 72% of
those requests failed. Of the 28% (or 147) successful requests,
more than half (75/147 = 51%) returned multiple parts of
speech that needed to be resolved by the algorithm. The
higher success rate may be due to the existence of more com-
mon terms in Treatise (Table 2). The higher success rate did
not seem to improve the annotation performance. This set of
results suggests that WordNet’s coverage of biological terms
and WordNet’s contribution to the algorithm’s performance
is limited.

Discussion of the Learning Curves Constructed From
Subsets of FNA v19 and Treatise Part H

On the smallest subsets from either source, the unsu-
pervised algorithm achieved over 80% accuracy on overall
annotation (FNA v19: 90%, Treatise Part H: 81.2%). The
annotation accuracies are higher if the modifier and head
nouns are considered separately (Figure 6). When collection
size increases, the annotation accuracies show an increasing
trend. These results seem to suggest that the learning of the
algorithm is rather effective and robust. It seems to be robust
because the increased noise introduced by larger collection
sizes did not drag down the annotation accuracy. The optimal
performance is reached when collection size reaches 3,000
clauses.
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FIG. 8. Access of the algorithm to WordNet while annotating the subcollections of FNA v19 and Treatise Part H.

Starting from the smallest subsets, Figure 7 shows that the
boundary words learned by the algorithm are mainly words
related to character states. Few organ names are mixed with
boundary words. The recall on character states increases
with the size of the collections. The results seem to be con-
sistent between the FNA v19 and Treatise Part H subsets. The
high precision in character states learned as boundary words
reinforces our initial impression that the learned boundary
words may be valuable for annotation at the character level.

With collection size increasing, the number of unique
words in a collection naturally increases, and so does the
number of unique words the algorithm needs to learn in
the process of annotating the clauses. The number of total
words and unique words increases at roughly the same rate.
In contrast, the rate at which the number of WordNet accesses
increases is much flatter, and the number of a single part of
speech returns remains almost constant. The results shown in
Figure 8 suggest that by exploring the text alone, the unsuper-
vised algorithm could gather a majority of the information it
needed to perform the clause-level annotation. The data also
confirms the earlier finding that WordNet’s coverage of words
in biosystematics is limited.

Last, Figure 9 suggests that the algorithm runs in lin-
ear time with respect to the number of clauses processed

(FNA: R2 = 0.9898 and Treatise: R2 = 0.9689). This means
the algorithm is not only effective, but also efficient in
processing the two collections.

Overall, the algorithm performs rather well, given the fact
that the algorithm knows nothing about either domain when it
starts. The algorithm learns from the plain text descriptions a
majority of the information needed to perform the clause-
level annotation. The algorithm achieved higher precision
than recall in a number of areas. High precision may be more
desirable than high recall when both cannot be achieved at
the same time. High precision ensures the learned modifiers,
organ names, and character states are reusable in another
bootstrapping procedure without introducing many errors,
or for enriching a domain lexicon. Harvesting good domain
terms from various sources as a way to improve recall is a
preferable strategy (Wood et al., 2004), especially when the
algorithm is inexpensive to run.

Conclusion

An algorithm is reported in this article for processing
descriptive documents whose syntax differs from standard
English syntax in its condensed use of nouns, adjectives,
and adverbs for domain concepts and in its lack of verbs.
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FIG. 9. Times taken for the algorithm to process the subcollections of FNA v19 and Treatise Part H.

TABLE 4. The complete list of words mistaken by the algorithm for organ names on FNA v 19 and Treatise Part H.

FNA v19 Treatise Part H

bilateral, center, color, combination, combinations, diam, diams, adults, affinities, angle, angles, break, breaks, characteristic, characteristics,
directions, divisions, dots, lateral, other, others, overtop, plane, degree, degrees, description, descriptions, dimensions, disposition, dispositions,
ring, time, times, types, unit dominant, dominate, dominates, dubium, enclosure, families, family, growth,

insertion, means, members, other, others, position, reaches, relationship, relationships,
representatives, row, space, specimen, specimens, stage, stages, start, starts, structure,
subfamily, top

TABLE 5. Some boundary words extracted from FNA v19 and Treatise Part H that are not related to character states.

FNA v19 Treatise Part H

again, age, ca, early, ever, except, excluding, gla, included, including, accommodate, accommodating, acting, additional, aforesaid, alongside,
just, kinds, late, later, least, like, mainly, may, mound, never, northern, elsewhere, also, although, apparently, appearing, aspect, assign, assigned,
otherwise, perhaps, particularly, per, produce, produced, producing, associated, assumed, available, away, because, belongs, certainly, characterized,
range, reaching, remaining, replaced, resemble, resembling, seen, think, chiefly, commonly, corresponding, creating, definitely, depending, described,
time, times, together, unlike, winter determining, diagnosis

Such syntax is often seen in organism morphological descrip-
tions. Because language processing utilities have not been
developed for such documents, the algorithm takes a bottom-
up approach to learn what the corpora themselves may
offer.

The evidence from the set of experiments reported in this
article suggests the following:

1. Biosystematics descriptions in deviated syntax hold ample
cues that can be exploited by an unsupervised learning
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algorithm to distinguish the semantic roles of the words
for tasks such as semantic annotation of the descriptive
clauses. This article shows that the task of dehypheniz-
ing, seed nouns learning, organ names and head nouns
learning, and boundary words learning can all be per-
formed rather effectively by looking for cues in the corpus
content. The cues held by the plain text seem to be suf-
ficient for the algorithm to perform with satisfactory or
better accuracy. No training examples, domain lexicons,
or grammar rules are needed. The removal of these prereq-
uisites may considerably lower the barrier to the adoption
of the technique. The domain concepts learned seem to
be clean enough to be used to enrich or construct domain
lexicons. Syntactic patterns or parsing trees of the clauses
may be generated to tailor a syntax parser for the domain
tasks.

2. The learning strategy works well, despite the syntactic
variations between FNA v19 and Treatise Part H. The
learning starts with the clauses that match “[organ name]-
[boundary words]” pattern, which seems to give reliable
cues—knowing a boundary word can reliably infer the
organ name and vice versa under certain conditions. Not
all clauses match this simple pattern, for example, a good
proportion of clauses from FNA v19 used adjectives for
a subject (e.g., “inner,” “outer”), many clauses in Treatise
Part H have an organ name following a number of bound-
ary words (which are really character states), and both
have many clauses without a subject. These variations are
handled after the simple clauses have been processed and
a good number of words accurately learned. The highly
repetitive usage of domain terms (such as organ names and
character states) works to the advantage of the algorithm,
as the words learned from simple clauses appear again
in other clauses, making it possible for the algorithm to
annotate the latter with good accuracy as well.

3. Anticipating differences in syntax used in different cor-
pora of descriptions, the design of the algorithm should
remain modular. In the experiments reported here, certain
secondary bootstrapping and post-bootstrapping modules
were selectively used, as noted in Figure 4.

4. Although the setting was manual at this time, a way to
automatically detect certain syntactic features of a cor-
pus and active necessary modules is desirable and will be
investigated in the future.

Ongoing and Future Work

Further development of the algorithm is underway to anno-
tate FNA descriptions at the character level, which extracts
character states from plain text descriptions and puts them
in a format such as XML (as shown in Figure 1), the EQ
format (Mabee, et al., 2007, for example, “cauline leaves
[E: entity]/ovate [Q: quality]” , “quality” means character
state), or a RDF triple (for example, “cauline leaves hasShape
ovate”). Since characters may not be directly extractable
from raw text because they are often implied rather than
stated (e.g., in “cauline leaves ovate,” the character “shape”
is implied), ontologies like PATO (PATO, 2006) or domain
experts must be consulted. Although existing ontologies may
not cover all concepts discovered from domain text, what they
already have can be used to prime the algorithm. In return,

the algorithm can help enrich ontologies by discovering
and proposing new concepts and properties. Character-level
annotation could be complicated, however, by the fact that
existing ontologies many not agree on the meaning of a char-
acter state. For example, the term “erect” takes on a number
of different meanings depending on which ontology one con-
sults: The FNA Glossary (Kiger & Porter, 2001) defines
“erect” as a state of orientation, the Oxford Plant Charac-
teristics (OPC, n.d) defines it as a state of habit, and PATO
ontology it as a state of position (with a synonym placement).
Without a shared view of the domain, the interoperability
among different annotated collections is lost, defeating the
purpose of semantic annotation.

Another piece of the puzzle is a module that can extract
sections of descriptions from parent documents, whether a
book or a journal article. Other methods have been reported,
including our own (Cui et al., 2002), but with the unsuper-
vised learning algorithm and the sets of organ names and
character states learned from the botany domain, an easier
method may be possible. This method involves construct-
ing a “model” description containing learned organ and state
names and using it to identify plant descriptions by simply
checking to what extent words in a candidate text overlap
with those in the “model” description. This strategy has been
successfully applied to extract the description section from
FNA v19 for this study. The same strategy may be applied to
documents of other taxonomic groups.

Developing and evaluating the algorithm on a character-
level annotation on a number of different corpora contributed
by various biodiversity communities is planned. These col-
lections include various plant families and fossil or living
invertebrate animals (ants, wasps, etc.). The annotated col-
lections will be used to populate biodiversity digital libraries,
generate identification keys, and for data mining applications.
With this system, we hope to mobilize the biosystemat-
ics knowledge locked in the text to support research in
systematics biology, comparative biology, and ecology.
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Appendix

Details of Selected Modules

In this appendix, details of a number of selected modules
are presented in pseudocode. These modules illustrate the
ways the algorithm exploits the content of the documents
itself to obtain the information needed to perform a certain
task. In the pseudocode below, “$” is used to indicate a scalar
variable, “@” to indicate an array, “@@” to indicate a two-
dimensional array (i.e. a matrix), and “/* */” to include a
comment.

Dehyphenation

Function: remove unnecessary hyphens from text using. For
example, turn “paniculi-form-scorpioid” to “paniculiform-
scorpioid.”
Exploits: the occurrences of the word in its standard form in
the text.
Input: a collection of plain text descriptions.
Output: updated text in which unnecessary hyphens are
removed.

1. @hyphenatedwords = getherAllWordsFromCorpus
Containing(“-”)

2. foreach $hyphenatedword in @hyphenatedwords{ /*e.g.
$hyphenatedword = “paniculi-form-scorpioid”*/

3. @dehyphenatedword = (); /*create an empty array to
save parts of the dehyphenated term*/

4. @parts = segmentByHyphen($hyphenatedword)
/*@parts now holds (“paniculi,” “form,” and
“scorpioid”)*/

5. $size = numberOfElementsIn(@parts) /*$size now
equals 3*/

6. @@matrix = initiateASquareMatrix($size) /* initialize
a 3x3 square matrix; each column and each row of this
matrix represent a part */ /*populate the upper-right half
of the matrix as follows:*/

7. if (connecting parts from $row up to $column forms a
legitimate word){ /* $row and $column takes the values
from 0 to $size-1; $row <= $column*/

8. $matrix[$row][$column] = 1
9. }else{

10. $matrix[$row][$column] = 0
11. }
12. sort the rows in @@matrix in descending order of the

distance of 1 to the diagonal line
13. foreach row in @@matrix{
14. $dehyphenatedword = connect the parts whose cor-

responding value is 1
15. add($dehyphenatedword, @dehyphenatedword) /*add

$ to @*/
16. remove the rows representing connected parts from

further consideration
17. exit the loop when no part is left
18. }
19. $resultantstring = connectWithHyphenAllElementsIn

(@dehyphenizedwords)
20. change all occurrences of $hyphenatedword in the col-

lection to $resultantstring
21. }

Further explanation of the algorithm is as follows:
For a hyphenated word “paniculi-form-scorpioid,”

line 4–11 forms a 3 × 3 square matrix (shaded cells are the
cells on the diagonal line):

Paniculi Form Scorpioid

Paniculi [0, 0] = 0 [0, 1] = 1 [0, 2] = 0
(row 0) (because (because (because

paniculi is not paniculiform is paniculiformscorpioid
a legitimate a legitimate is not a legitimate
word) word) word)

Form [1, 1] = 1 [1, 2] = 0
(row 1) (because (because

form is formscorpioid
a legitimate is not a legitimate
word) word)

Scorpioid [2, 2] = 1
(row 2) (because scorpioid

is a legitimate word)

Line 12 sorts the rows by the longest distance of a 1 to
the diagonal cell on each row, in descending order. For row
1, this distance is the distance between the cell [0, 1] and
[0, 0], which is 1; for row 2, the distance is 0 (i.e. the distance
between cell [1, 1] and itself); and for row 3, the distance is
0 as well (i.e. the distance between [2, 2] and itself). Because
row 1 has the longest distance, the legitimate word “pani-
culiform” formed on row 1 is saved to @dehyphenatedword
on line 15, and the rows representing “paniculi” and “form”
(i.e. row 0 and row 1) are removed from further considera-
tion on line 16. This leaves only row 2 to be examined, which
contains one legitimate word “scorpioid” (cell [2, 2] = 1),
which is also saved to @dehyphenatedword. Connecting all
legitimate words in @dehyphenatedword, the resultantstring
is “paniculiform-scorpioid” on line 19. Finally all occur-
rence of “paniculi-form-scorpioid” in the text are replaced
by “paniculiform-scorpioid” on line 20.

learnSeedNouns

Function: identify nouns from a description collection.
Exploits: the occurrences of singular, plural, and verb
endings of a word in the collection.
Input: a collection of plain text descriptions.
Output: a set of nouns tagged as p (plural) or s (singular).
/*line 1-4: initialize verb endings, noun endings, and spe-
cial singular and plural noun endings of biological terms, for
example “pulvini” is the plural form of “pulvinus”*/

1. @verbendings = (ing)
2. @nounendings = (tion, ness, ism, ist, ment, ance, ancy,

ence, ency, sure);
3. @specialsingularendings = (on, is, ex,ix, um, us, a);
4. @specialpluralendings = (ia, es, ices, i, ae);
5. remove any HTML or other tags from text files
6. read words from files

/* line 7 to 14 collect words with a special plural/singular
ending and appearing before “absent” or “present”.
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These words are saved as plural/singular nouns. An
example of such case is “Pulvini absent.”*/

7. foreach $word{
8. if($word appears before (absent|present) in descriptions

and $word has $specialpluralending){
9. addpluralnoun($word)

10. }
11. if($word appears before (absent|present) and $word has

$specialsingularending){
12. addsingularnoun($word)
13. }
14. }

/*line 15–26 look for other nouns by using the following
heuristic rule:
A word is a noun if a) its singular and plural forms can
be found in the text, and b) its verb form (i.e. –ing) can
not be found in the text)*/

15. group words by their roots /* e.g. “abaxial” and “abaxi-
ally” are in the same group*/

16. foreach @group{
17. if (@group contains only one $word and the $word

has a $nounending){ /*e.g. if a group contains one word
“combination” */

18. addsingularnoun($word) /*e.g. save “combination”
as a singular noun */

19. }else if(@group has at least two words and none of
them has a $verbending ){

/* e.g. a group such as (“extend,” “extends,” “extend-
ing”) does not pass the above test. A group such as
(“stem”, “stems”, “stemless”) passes this test */

20. foreach @pair of words in @group{
/*a group of x words makes x(x-1)/2 pairs. For exam-

ple: the group (“stem”, “stems”, “stemless”) gives the
following 3 pairs “stem”/“stems”, “stem”/“stemless”,
and “stems”/“stemless” */

21. ($singular, $plural) = isSingularPluralPair(@pair)
/*this function is defined below*/

22. addsingularnoun($singular)
23. addpluralnoun($plural)
24. }
25. }
26. }

isSingularPluralPair(a pair of words): This function
decides if a pair of words in the singular and plural forms
of a word. It returns yes if (a) one word has a $specialsin-
gularending and the other word has a $specialpluralending
and the difference in length between the two words is less
than 2, or (b) the longer word contains the shorter word and
ends with a combination of letters in [yies] and the difference
between the two words in length is less than 3. Otherwise, it
returns no.

CoreBootstrapping

Function: assign “n,” “b,” or “m” roles to words in a collec-
tion; annotate individual clauses in a collection. The “n” role
may be specified either as “s” (singular) or “p”(plural).
Exploits: the pattern of “modifier-head noun-boundary
word” that starts a simple clause.
Input: a collection of text descriptions.

Output: a knowledge base consists of words and their roles;
a database consists of clauses annotated with their subject
(including the modifier and the head noun).

1. extractAndCategorizeClauses() /*Clauses with a plural
subject are put in the “start” category. Other clauses are
put in “normal” category. */

2. discover (“start”)/*clauses in the “start” category is
learned first*/

3. discover(“normal”)/*clauses in the “normal” category is
learned after */

extractAndCategorizeClauses()

1. segment files into clauses by punctuation marks: semi-
colon (;), colon(:), and period(.)

2. foreach $clause{
3. if ($clause starts with a plural noun or a word with a

plural ending){
4. save $clause in the “start” category
5. }else{
6. save the clause in the “normal” category
7. }
8. }

discover($status)

/*$status is either “start” or “normal”*/

1. foreach unannotated $clause with $status{
2. @leadingWords = getLeadingWords($clause, $x)/*get

the first $x = 3 words from the clause*/
3. $ptn = buildPattern(@leadingWords, $x)/*see below for

buildPattern function*/
4. @matched = getIdsOfUnannotatedClauseThatMatch

($ptn,$status) /*find clauses that match the pattern $ptn*/
/*line 5 to 11 annotate clauses one by one until there is
no new discovery is made in an iteration*/

5. do{
6. $madeNewDiscovery = 0;
7. foreach $id in @matched{
8. if (the clause with $id is not annotated)
9. $madeNewDiscovery += dothis($id) /*dothis

annotates the clause whose id = $id*/
10. }
11. }while ($madeNewDiscovery > 0)
12. }

buildPattern(@leadingWords, $x): returns the pattern that
matches any sentences whose first $x words match any word
in @words. For example, if @leadingWords = (cat, dogs,
fist), then the pattern is /ˆ(cat|dogs|fish)|ˆ\w + \s(cat|dogs|
fish)|ˆ\w + \s\w + \s(cat|dogs|fish)/.

dothis($id)

/*this is the core bootstrapping procedure*/

1. $new = 0 /*when the program starts, the count of new
discoveries is initialized to 0*/
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2. $clause = fetchClauseWith($id)
3. $lead = getLeadingWordsFrom ($id, 3) /*get the leading

words of a clause. Take no more than 3 words before a
punctuation mark as the lead. The lead is likely to contain
the subject and the first few boundary words. */

4. $rolePattern = getRolePattern($lead) /*A role pattern is
a combination of “p”, “s”, “n”, “b”, and “?”. “p” stands
for plural noun, “s” stands for singular noun, “n” stands
for noun (no matter its count), “b” stands for boundary
word, and “?” stands for unknown. For example, the role
pattern of a lead “flowers red” may be /pb/ if “flowers” is
known to be a plural organ name and “red” a boundary.
If either of the word is known, the role pattern is /??/ */
/*Line 5 to 50 treats a number of rolepatterns one by
one. Not all possible patterns are treated. Only patterns
that may provide reliable inferences are treated to avoid
errors. Inferences include finding the annotation [tag] for
a lead and finding a semantic role for a word. */

5. if ($rolePattern matches /ˆ[pns]$/){ /*e.g. the role pattern
of a lead “leaves:” is /p/ */

6. $tag = $lead /*e.g. determine the annotation for the
lead and the corresponding clause is “leaves”*/

7. }else if ($rolePattern matches /ps/){ /*e.g. a lead “sty-
lopodia lateral” may has a pattern /ps/ */

8. $tag = all words in $lead up to the p /*annotation =
“stylopodia” */

9. $new += change the role s to role b /*identify and
correct the error, change the role for “lateral” to “b”*/

10. }else if ($rolePattern matches /p?/){
11. $number = checkWordNetForTheNumberOf(?) /*need

to know if the word corresponding to “?” is a plural or a
singular to decide how to proceed.*/

12. if($number == p){ /* e.g. “fruits nuts”, if WordNet
says that “nuts” is a “p”, now the pattern is known as
/pp/*/

13. $tag = the word corresponding to the 2nd p
/*annotation = “nuts”*/

14. $new += updateRole of ? to p /*add “nuts is a p” to
the knowledge base, 1 new discovery is made so increase
$new by 1*/

15. }else{ /*the pattern remains /p?/. e.g. “flowers soli-
tary”*/

16. $tag = up to the p /*annotation = “flowers”*/
17. $new += updateRole of ? to b /* solitary’s role is

“b”, 1 new discovery is made so increase $new by 1*/
18. }
19. }else if ($rolePattern matches /ˆsbp/){
20. $tag = all words in $lead up to the p
21. }else if ($rolePattern matches /[psn]b/){
22. $tag = all words in $lead up to the noun before b
23. }else if ($rolePattern matches /[psn][psn]+/ or $rolePat-

tern matches /[?b][?b]([psn])$/){
24. $extendedPattern = $rolePattern+all consecutive

nouns from the clause following $lead
/*patterns end with an organ name (n), but this n may

be a modifier for another organ name (e.g. leaf blade).
$extendedPattern includes all organ names that were left
out from $lead*/

25. if($extendedPattern matches /pp/) {
26. $tag = the word corresponding to the last p
27. $new += updateRole of the word after $extended-

Pattern to b

28. }else{
29. $tag = all words represented in the $extended-

Pattern
30. $new += updateRole of the word after $extended-

Pattern to b
31. }
32. }else if ($rolePattern matches /ˆs?$/){
33. $number = checkWordNetForTheNumberOf(?)

/*check if ? is a plural or a singular*/
34. if($number == ‘p’){ //now the pattern is known as

/ˆsp$/
35. $tag = all words represented in $rolePattern
36. $new += updateRole of ? to p
37. }else{ //the pattern remains /ˆs?$/
38. $tag = the word corresponding to s
39. $new += updateRole of ? to b
40. }
41. }else if ($rolePattern matches /ˆb[sp]$/){
42. $tag = all words represented in $rolePattern
43. }else if ($rolePattern matches /ˆ?b/){
44. $number = checkWordNetForTheNumberOf(?)

/*check if ? is a plural or a singular*/
45. if(($lead does not contain a preposition and is not

followed a noun) and $number matches [sp]){
46. $tag = word represented by ? /*now the pattern is

either /ˆsb/ or /ˆpb/ */
47. $new += updateRole of ? to $number
48. }
49. annotateClause($tag, $id) /*annotate the clause with

$tag*/
50. return $new; /*$new discoveries have been made.

$new == 0, meaning this run has made zero new dis-
coveries, would terminates the learning process. */

leadWordBootstrapping

Function: assign “n”, “b” “m” roles to words in a collection;
annotate individual clauses in a collection. The “n” role may
be specified either as “s” (singular) or “p”(plural).
Exploits: the same organ from different orgnisms may have
different boundary words.
Input: clauses extracted from a collection.
Output: new “n”, “b”, or “m” words; annotations for some
previously unannotated clauses.

1. $new = 0 /*when the program starts, the count of new
discoveries is initialized to 0*/
/*Line 2 finds clauses that are un-annotated. Sort them
by the length of their “lead”, longest lead first. Let’s say
“stigmatic scar basal” is such an un-annotated clause*/

2. @unannotatedClauses = getUnannotatedClauseWith
MultipleWordsLead(“SortByLengthOfLead
Descendingly”);

3. foreach $clause in @unannotatedClauses{ /* e.g.
$clause = “stigmatic scar basal, . . . .” */

4. $lead = getLeadingWordsFrom($clause, 3) /*$lead =
“stigmatic scar basal” */

5. $lead = removeLastWordFrom($lead) /*$lead =
“stigmatic scar” */

6. if (the last word in $lead is a noun){ /*by checking
what has been learned or check WordNet, find “scar” is
a noun*/
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7. @clausesWithSameLead = getUnannotatedClauses
StartingWith($lead)/*find other un-annotated clauses
starting with “stigmatic scar”, e.g. find “stigmatic scar
apical” */

8. if(@clausesWithSameLead is not empty){
9. annotate the clauses with the shared $lead /*anno-

tate “stigmatic scar apical” with “stigmatic scar” */
10. $new += updateRole of the word immediately

following $lead to b /*new discovery: “apical” is a “b”,
increase $new by 1*/

11. }
12. }
13. }

/*Line 14 to 19 deal with a special case, that is, when a
clause contains one single word. Mostly likely the word
is an organ name. */

14. @unannotatedClauses = getUnannotatedClauseWith
SingleWordLead();

15. foreach $clause in @unannotatedClauses{
16. $lead = getLeadingWordsFrom($clause, 1) /*get the

first and the only word*/
17. annotate $clause with $lead
18. $new += updateRole of $lead to n /*increase the

count of the new discoveries*/
19. }
20. return $new; /*return the number of new discoveries have

been made in this run*/

unknownWordsBootstrapping

Function: infer the role of words whose role is still unknown.
Exploits: the fact that plural nouns, when used as a subject,
are the head noun, as opposed to being a modifier of a head
noun.
Input: all unknown words, a description collection.
Output: new discoveries on the roles of some previously
unknown words.

1. $new = 0;
2. do{

/*Line 3 collects a set of possible plural nouns. Line
5 further tests if a candidate is more likely than not
to be a plural noun. If so, further search is done
on Line 7 and 9 to find other words that appear
immediately after and before the newly discovered
plural noun. Those appears before the noun are new
“b” words, and those after the noun are new “m”
words. */

3. @unknownWordsWithPluralEndings = get all
unknown words with a plural ending

4. foreach $unknownWord in @unknownWordsWithPlu-
ralEndings {

5. if ($unknownWord is seen to appear before a b word
in a description){

6. $new += updateRole of $unknownWord to p
/*$new keeps the count of new discoveries*/

7. @discoveredBoundaryWords = find all unknown
words seen to immediately follow $unknownWord in the
collection

8. $new += updateRole of all words in @discovered-
BoundaryWords to b

9. @discoveredModifierWords = find all unknown
words seen to immediately proceed $unknownWord in
the collection

10. $new += updateRole of all words in @discovered-
ModifierWords to m

11. }
12. }
13. }while ($new > 0)

adjectiveSubjectsBootstrapping

1. Function: identify and annotate the clauses with an adjective
subject.

2. Exploits: 1) an adjective subject is followed by a boundary
word. 2) “and” and “or” connect words playing the same role.

3. Input: all clauses with known words tagged with a role.
4. Output: a set of new modifiers; annotations to clauses with

adjectiveSubjects.

1. $new = 0
2. do{

/*Line 3 collects possible “adjectives as subject”
cases, for example “cauline and <M>basal</M>
<B>often</B>” contains a modifier (i.e. basal) followed
by a boundary word (i.e. often), which makes “basal” a
possible “adjective as subject” case.*/

3. @adjectiveSubjects = findModifiersFollowedByA
BoundaryWord();

4. @adjSubClauses = findUnannotatedClausesContaining
AnyWordIn(@adjectiveSubjects)

5. foreach $adjSubClause in (@adjSubClauses){
6. if($adjSubClause match /? (and|or) (@adjectiveSub-

jects) #/){ /*match e.g. “cauline and <M>basal</M>”*/
7. if(# is the end of a clause){ /*e.g. cauline and

<basal>;*/
8. $new += updateRole of ? to m /*e.g. cauline is

an m*/
9. annotate the clause “ditto”

10. }else if(# is a b){ /*e.g. cauline and <M>basil</M>
<B>often. . .*/

11. $new += updateRole of ? to m /*e.g. cauline is an
m */

12. annotate the clause with “? and/or $adjectiveSub-
jects” as the modifier, the parenttag found by looking
into the context as the tag /*e.g. tag this clause <cauline
and basal [leaves]>*/

13. }
14. }else if($adjSubClause match / (@adjectiveSubjects)

b/){ /*e.g. <M>basal</M> <B>often</B> absent*/
15. annotate the clause with the matched $adjec-

tiveSubject as the modifier, the parenttag as the tag
/*annotation = <basal [leaves]>*/

16. }
17. }
18. discoverNewModifiers()
19. }while($new > 0)

discoverNewModifiers()

1. $new = 0
2. do{

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—March 2010 541
DOI: 10.1002/asi



/*Line 3 and 7 find new modifiers by looking for con-
junctions (and/or) between an unknown word and a
modifier*/

3. @segments = findAllSegmentsMatchingPattern( /?
(and|or) m b/ ) /* e.g. cauline and <M>basil</M> */

4. foreach $segment in @segments{
5. $new += updateRole of ? to m

6. }
7. @segments = findAllSegmentsMatchingPattern( /m

(and|or) ? b/ ) /*e.g <M>cauline</M> and basil */
8. foreach $segment in @segments{
9. $new += updateRole of ? to m

10. }
11. }while($new > 0)
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