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Annelids are abundant and speciose in the modern world but are comparatively

few in the fossil record. Primitive annelids were expected to have developed eyes

and nuchal organs, but until now definitive evidence is still lacking. Based on a

new specimen from the Wulongqing Formation, we describe Gaoloufangchaeta

bifurcus gen. et sp. nov. from the Guanshan biota (Cambrian Series 2, Stage 4)

of Yunnan province, China. The overall profile of the body and the presence

of tentacles and stout parapodia with simple chaetae establish it as a primitive

polychaete. By bearing bicellular eyes and possible nuchal organs, the new form

has developed relatively strong sensory abilities. Our material further confirms that

polychaetes were already diverse by Cambrian Series 2, indicating a much earlier

origin for the group.
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Introduction

Annelida is a highly diverse phylum that includes approximately 17,000 described species
(Nanglu and Caron, 2018). The records of fossil representatives are sparse because annelids
are entirely soft-bodied and decay rapidly (Briggs and Kear, 1993; Parry et al., 2014).
Whole-body fossil annelids have been recovered from early Cambrian to Carboniferous
strata (Conway Morris, 1979; Schram, 1979; Thompson, 1979; Briggs et al., 1996; Sutton
et al., 2001; Huang et al., 2004; Farrel and Briggs, 2007; Vinther et al., 2008; Högström
et al., 2009; Briggs and Bartels, 2010; Liu et al., 2015; Han et al., 2019). In particular, the
Cambrian annelids are predominantly polychaetes, which are strikingly various and widely
distributed, including Burgessochaeta setigera (Walcott, 1911), Canadia spinosa (Walcott,
1911), Peronochaeta dubia (Walcott, 1911), Insolicorypha psygma (Conway Morris, 1979),
Stephenscolex argutus (Conway Morris, 1979), and Kootenayscolex barbarensis (Nanglu and
Caron, 2018) from the Burgess Shale, Phragmochaeta canicularis (Conway Morris and Peel,
2008), and Pygocirrus butyricampum (Vinther et al., 2011) from Sirius Passet, Ipoliknus avitus
(Han et al., 2019), and Adelochaeta sinensis (Han et al., 2019) from Chengjiang,Dannychaeta
tucolus (Chen et al., 2020) from the Cambrian Canglangpu Formation of Yunnan, and
Guanshanchaeta felicia (Liu et al., 2015) fromGuanshan. Nanglu and Caron (2018) proposed
that primitive annelids could have developed eyes and nuchal organs. However, of all the
polychaetes documented above, none has been demonstrated to possess eyes thus far.
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FIGURE 3

Gaoloufangchaeta bifurcus gen. et sp. nov. (A) detail of Figure 2, position marked by frame a. (B, C) SEM-EDX maps of (A), the specimen was rotated

slightly to the left. Ey, eye; Mo?, possible mouth; NO?, possible nuchal organ; Pa, parapodium; Te, tentacle. The scale bars are 0.5mm.

FIGURE 4

Gaoloufangchaeta bifurcus gen. et sp. nov. (A) detail of Figure 2, position marked by frame b. (B) EDX map of (A), the specimen was rotated

anticlockwise slightly. (C) Detail of Figure 2, position marked by frame c. (D) Detail of Figure 2, position marked by frame d; the specimen was rotated

clockwise a little to show the pygidium in upright orientation. (E) Detail of Figure 2, position marked by frame d; the red dotted line shows the profile

of the pygidium. Ch, chaeta; Co, constriction; Pa, parapodium; Ra, ramus; TD, traces of decay; TG, traces of gut. The scale bars are 0.5mm.
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FIGURE 5

Main early and middle Cambrian fossil Lagerstätten yielding polychaetes.

and evident segment boundaries. G. bifurcus is different
from Adelochaeta sinensis in that the latter has a clearly
defined head region and aciculae, which are absent from
the former. The most obvious similarity between G. bifurcus

and the three unidentified polychaetes is the presence of
chaetae; further comparisons are hard to make owing to the
incomplete preservation of the three individuals. The absence of
characteristics such as palps, prostomium, thorax, and parapodia
with lateral lamellae discriminates G. bifurcus from Dannychaeta

tucolus (Chen et al., 2020), a tube-dwelling polychaete from
the Canglangpu formation (Cambrian Series 2, Stage 3) of
Yunnan province.

Hitherto, the Burgess Shale has yielded the most abundant
polychaetes of various morphologies in Cambrian Lagerstätten.
Gaoloufangchaeta bifurcus approximates Burgessochaeta setigera

and Canadia spinosa in the elongated profile of the body and
by having uniramous parapodia. However, the number of body
segments and the presence or absence of branchia discriminate
the three taxa. Peronochaeta dubia and Stephenscolex argutus most
differ from G. bifurcus in that they bear papillae at the anterior end
of the body, instead of tentacles. G. bifurcus shares the same body
length with Insolicorypha psygma, whereas the latter has a bipartite
head region and more trunk segments. Kootenayscolex barbarensis
bears a pair of large palps and a median antenna, which are absent
from G. bifurcus.

Different from Gaoloufangchaeta bifurcus, Phragmochaeta

canicularis (Conway Morris and Peel, 2008), a polychaete from the
Sirius Passet Lagerstätte, has numerous long and thin chaetae and
more trunk segments. The body terminating in a bifid structure is
the most apparent similarity between G. bifurcus and Pygocirrus

butyricampum (Vinther et al., 2011), another polychaete from the
Sirius Passet. However, the profile of the bifid structure is different
between the two taxa: V-shaped for P. butyricampum and more or
less U-shaped for G. bifurcus. In addition, P. butyricampum has
more trunk segments.

Discussion

Gaoloufangchaeta bifurcus gen. et sp. nov. is described
based on a single specimen with decay traces, and thus,
some of its characteristics cannot be confirmed as original.
The neck-like structure (Figure 2) may be an artifact
formed during burial given the soft nature of annelid
bodies, and hence, the tripartite outline of the body of
the new form is tentative in this study; the parapodia
lined along both sides of the trunk appear to be too
stout, and whether each is composed of two lobes (i.e.,
notopodium and neuropodium) cannot be confirmed on
this comparatively poorly preserved specimen; they are
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temporarily interpreted here as uniramous; the morphologies
of the inferred nuchal organs and mouth are not clearly
shown on the specimen, and their identities need to be
confirmed by additional and better-preserved ones; decay
traces obscure the morphology of the posterior part of the trunk
(Figures 2, 4C).

Gaoloufangchaeta bifurcus from Cambrian Series 2 of
southwest China is one of the oldest fossil annelids recovered so
far. Structures such as eyes and nuchal organs have previously
been expected but not found in ancestral annelids (Weigert
et al., 2014; Nanglu and Caron, 2018). The specimen of G.

bifurcus clearly shows evidence of eyes and possible nuchal
organs (Figures 2, 3) for the first time in Cambrian polychaetes,
demonstrating that the oldest annelids are not all devoid of
these sensory organs. By having tentacles, eyes, possible nuchal
organs, and stout parapodia, G. bifurcus clearly had comparatively
strong sensory abilities and an active and epibenthic lifestyle.
Although no evidence of a proboscis with jaws is found in
the single specimen, the possibility of the new taxon being a
predator or scavenger cannot be ruled out. Our material not only
provides a new epibenthic representative for early Cambrian
marine animals but also a new soft-bodied metazoan for the
Guanshan biota.

Until now, fossil polychaetes are the most diversified and
abundant in the Burgess Shale (Cambrian Miaolingian, Wuliuan);
the earliest whole-body preserved ones date back to Cambrian
Series 2, Stage 3, represented by Phragmochaeta canicularis

and Pygocirrus butyricampum from Sirius Passet, and Ipoliknus

avitus and Adelochaeta sinensis from Chengjiang. Together with
Gaoloufangchaeta bifurcus, the slightly younger Guanshan biota
(Figure 5) has yielded two types of polychaetes. These occurrences
confirm that polychaetes were already diverse in morphology
by Cambrian Series 2, indicating a much earlier origin for
the group.

Gaoloufangchaeta shows the characteristics proposed for
primitive annelids, i.e., errant polychaete body form, parapodia
with simple chaetae, and prostomial sensory organs (Parry
et al., 2014; Weigert et al., 2014), and thus, it is among
the primitive representatives of Annelida. Of all the early and
middle Cambrian polychaetes, only the bodies of Pygocirrus,
Guanshanchaeta, and Gaoloufangchaeta terminate in a bifid
structure, suggesting a similar phylogenetic grade in between.
Gaoloufangchaeta bears eyes and possible nuchal organs that
are absent from Pygocirrus and Guanshanchaeta, which implies
that Gaoloufangchaeta might be comparatively more derived
and/or even a representative of the last common ancestor
of annelids.

Conclusion

We describe a new primitive polychaete, Gaoloufangchaeta
bifurcus gen. et sp. nov., from the Cambrian Series 2, Stage 4 of
southwest China. This is the second polychaete from the Guanshan
biota and among the oldest records of fossil annelids globally.
Our material not only demonstrates that relatively strong sensory
organs had developed in Cambrian annelids but also further
confirms that polychaetes were already diverse in morphology by
Cambrian Series 2.
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