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Abstract

Most spiders use venom to paralyze their prey and are commonly feared for their potential to cause injury to humans. In
North America, one species in particular, Loxosceles reclusa (brown recluse spider, Sicariidae), causes the majority of necrotic
wounds induced by the Araneae. However, its distributional limitations are poorly understood and, as a result, medical
professionals routinely misdiagnose brown recluse bites outside endemic areas, confusing putative spider bites for other
serious conditions. To address the issue of brown recluse distribution, we employ ecological niche modeling to investigate
the present and future distributional potential of this species. We delineate range boundaries and demonstrate that under
future climate change scenarios, the spider’s distribution may expand northward, invading previously unaffected regions of
the USA. At present, the spider’s range is centered in the USA, from Kansas east to Kentucky and from southern Iowa south
to Louisiana. Newly influenced areas may include parts of Nebraska, Minnesota, Wisconsin, Michigan, South Dakota, Ohio,
and Pennsylvania. These results illustrate a potential negative consequence of climate change on humans and will aid
medical professionals in proper bite identification/treatment, potentially reducing bite misdiagnoses.
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Introduction

The brown recluse spider (Loxosceles reclusa) (Fig. 1) is notorious

for its necrosis-inducing bite [1]. Its venom contains a rare toxin,

sphingomyelinase D, which, when incorporated into the skin and

subcutaneous tissues, ultimately triggers platelet aggregation,

endothelial hyperpermeability, hemolysis, and neutrophil-depen-

dent skin necrosis [2–3].

The species is synanthropic over much of its range in the United

States and, as such, is commonly misconstrued as being ubiquitous

throughout the country, particularly by medical professionals [4–5].

This leads to bite misdiagnoses for potentially serious conditions, such

as Lyme disease, lymphoma, squamous cell carcinoma, and fungal

infections [6]. Although habitation with humans may impact the range

of L. reclusa, clear distributional demarcation does exist [4,7–9]. The

species is primarily found in the south-central United States, from

southern Illinois south to Texas and from eastern Tennessee west to

Kansas (Fig. 2A). Loxosceles reclusa prefers dry, dark areas, and outside of

human habitation, is often found under stones and within the bark of

dead trees [10].

In this study we applied the technique of ecological niche modeling

(ENM) to distributional data, recorded over more than 10 years, with

the aims of: (i) establishing the geographic range of the species with

greater accuracy, and (ii) forming predictions of how the distribution

might change as a result of climate warming trends.

ENM is a rich area of study that has seen tremendous growth in

past years [11–14]. Species geographic occurrence points and

predictor variables (usually climatic or environmental parameters)

are related within machine-learning algorithms to make inferences

about the environmental requirements for a species, which can

then be projected onto geography. These models can also be

projected onto changed landscapes, such as future climate

scenarios, as a forecasting tool for biotic responses to differing

conditions [15–18].

A growing number of studies indicate ENM is a useful tool for

understanding ecological and geographic dimensions of vectors

and disease reservoirs [19–27] and for identifying areas that may

become affected under future climates, causing public health

problems [28–32]. The more accurate range estimations and

predictions for the brown recluse presented in this study could

prove to be valuable to the medical community when assessing

putative spider bites. Moreover, assessment of the future range of

L. reclusa will prepare the public for potential invasions and alert

them to the appropriate protocols for dealing with this spider.

Results and Discussion

Ecological niches were generated using two programs: the

Genetic Algorithm for Rule-set Prediction (GARP) [33] and

Maxent [34] (see Methods section b for details). Seven environ-

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e17731



mental variables and 240 occurrence points served as the input

data for model analysis (Methods sections c & d).

(a) Accuracy metrics
Geographic projections of the ecological niche models were

tested using the partial Receiver Operating Characteristic analysis

(ROC) [35–36]. ROC is a threshold-independent measure of

model quality as compared to null expectations. Partial ROC area

under the curve (AUC) ratios were 1.49 and 1.45 for Maxent and

GARP, respectively. The ratios were statistically significant above

the line of null expectations (z-tests, P,0.001). The false negatives

rate [35] was also calculated, with only 16 test points (11%)

omitted from the Maxent model and 10 points (6.7%) omitted

from the GARP model. Results from both analyses suggest high

model fidelity and predictability.

Model results were also compared to previously published

distributions of the brown recluse spider [4] (Fig. 2A). Experts have

a fairly accurate knowledge of the current range of the species

because of its medical importance, but in a qualitative sense, not

quantitative as presented here. It is important to note that ENMs

are often difficult to test and validate in this way (i.e., by

comparison to the realized distribution of the species), because the

actual distribution may not mirror the potential distribution (the

niche model). Historical and biological barriers may prevent a

species from occupying all suitable habitat [13,37].

(b) Present-day Modeling
Results from our present-day study mirror the known

distribution of the brown recluse fairly well (Fig. 2). Discrepancies

between the models and the previously recorded range include the

suitable habitat predicted present in the Atlantic coast states (from

New Jersey to South Carolina), whereas the easternmost extent of

the present range of the brown recluse is currently documented to

be Kentucky, Tennessee, and the south-western part of Ohio [4].

This incongruence either indicates model failure, with models

including regions not ecologically suitable for the species, or the

models are correct, and the brown recluse is not found on the east

coast because of historical or biological barriers or limited

dispersion potential, the latter scenario making range expansions

plausible if these limitations are overcome [13,38].

General congruence between the geographical range docu-

mented by arachnologists and our niche models (Fig. 2) suggests

the partial synanthropy of the brown recluse is not the dominant

influence on distributional patterns. Although the spider may be

able to expand beyond its natural constraints with the aid of

human infrastructure, the species is not widespread, as would be so

if its only confines were buildings. For example, L. reclusa is not

found north of a demarcation line cutting the state of Illinois

approximately in half [39], yet houses are obviously present above

this line (i.e., within the largest city in Illinois, Chicago). In this

case, what is likely responsible for this demarcation line is the cold

temperature tolerance of the brown recluse [39]. The scope of this

study was to generate models that retrieved ecological signal for

the spider, and even if the brown recluse does cohabit with

humans, the issue is not overly concerning for our analysis.

In general, Maxent models predicted a smaller suitable area and

had a less uniform coverage compared to the models produced

with GARP. For example, the present-day Maxent projection

estimated suitable ecological conditions in 33 states (counting the

District of Columbia) with 13.68 percent of area within the

continental U.S. predicted habitable. The present-day GARP

projection only predicted suitable habitat in 25 states but predicted

15.89 percent of area within the continental U.S. as habitable

(Fig. 2B). This may be a reflection of the underlying mechanics of

Maxent, where the algorithm can give very large probability

distribution values for environmental conditions outside the range

present in the study area (called clamping) [34]. Clamping occurs

when a pixel possesses a value for a variable outside of the range of

values encountered in the training region. That pixel is given the

closest value present for that variable in the model; however, the

model is prone to over-extensive predictions when the response

curve is high (or was increasing) and curtailed by the environment

present in the training region. In our study, a few small areas of

California, Oregon and Washington were specified as suitable in

the Maxent models but were also designated as clamped regions.

There is considerable public ignorance about the brown recluse

spider and its range within the United States. In a nation-wide

survey [40], 1,406 out of 1,773 (79%) specimens submitted as L.

reclusa did not belong to that species; all but two of the genuine

brown recluse occurrences came from within the known area of

distribution of the species. Of those two odd records, one (a

singleton) could be explained by recent transport with household

effects, while the other (3 specimens) lies within the Atlantic coast

region, which may represent suitable recluse habitat. The results of

our present-day study provide further confirmation that L. reclusa

has a well-demarcated distribution, outside which it is unlikely to

occur under normal circumstances. Thus, diagnoses and reports of

brown recluse bites in non-endemic areas should be treated with

skepticism.

(c) Future Modeling
While the above analyses facilitate relatively straightforward bite

diagnoses based on geography, this situation may become more

ambiguous in the near future. Recent shifts in the geographic

ranges of many species as a function of climate change have been

observed on a global scale [17,41–46]. The Earth’s climate is

predicted to warm at a rate of about 0.2uC/decade for the next

two decades in many global climate models [47]. Organisms are

expected to respond to these changes by habitat tracking,

extinction, or, less likely, adaptation. Analysis of the effects of

Figure 1. Brown recluse specimen. Collected in Lawrence, KS, USA.
Scale: 5 mm.
doi:10.1371/journal.pone.0017731.g001
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climate change on L. reclusa using both liberal (a2a) and

conservative (b2a) forecasts of change suggests a northward shift

and spreading to the east and west in the geographic space where

the current niche conditions are met (Fig. 3). In the Northern

Hemisphere, northward shifts in species’ distributions as a result of

environmental change have already been observed in other taxa,

including birds, mammals, and butterflies [48]. Both the liberal

(a2a) and conservative (b2a) future climate scenarios indicate new

states could be invaded, including parts of Nebraska, Minnesota,

Wisconsin, Michigan, South Dakota, Ohio, and Pennsylvania

(Fig. 3). The two climate change scenarios (a2a and b2a) did not

produce dramatically different model results (Table 1, Fig. 4);

however, divergence between the scenarios increased with time

(e.g., greatest divergence with the 2080 time slice) using both

GARP and Maxent.

The amount of suitable area did not differ by more than 7.12

percent between present and future projections, but the shape and

position of the niche in geographic space did change (Table 2).

Maxent and GARP predicted a similar percentage of suitable area

within the United States, although available suitable area

increased with time in Maxent models and decreased with time

in GARP models (Table 2). This divergence likely reflects

differences in the underlying mechanics of the two algorithms.

Niche modeling algorithms commonly produce results that differ

[49–51], which has generated support for an ‘‘ensemble’’

approach to predicting species distributions. Several strategies

for handling model variability have been proposed in ensemble

forecasting: (i) a single best model (providing the best fit to

available data) is chosen, (ii) models are presented individually,

and (iii) models are combined into a consensus prediction via

Figure 2. Present-day niche modeling results in comparison to previously identified distribution. A) Distribution of the brown recluse
based on field studies and literature surveys from [4]. Note the general congruence between the niche model results and the distribution recognized
by arachnologists. B) GARP models are depicted on the left, with the training region above and projection below. Maxent models are depicted on the
right, with the training region above and projection below. Occurrence points are mapped onto these models, with lime green points = training data
and salmon points = testing data. A threshold has been applied, allowing for a maximum of five percent omission error based on presence data.
Results are depicted in USA Contiguous Albers Equal Area Conic map projection.
doi:10.1371/journal.pone.0017731.g002

Figure 3. Future niche modeling results for three time slices: 2020, 2050, and 2080. GARP models are depicted on the left, with Maxent
models on the right. Two climate change scenarios were utilized: a2a (liberal) and b2a (conservative). The lime green dotted polygon indicates the
distribution of L. reclusa according to arachnologists, as was depicted in Fig. 2B. Suitable habitat for the brown recluse shifts northward with time. A
threshold has been applied, allowing for a maximum of five percent omission error based on presence data. Results are depicted in USA Contiguous
Albers Equal Area Conic map projection.
doi:10.1371/journal.pone.0017731.g003
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model agreement, model central tendency (e.g., mean), or

probability density functions [52]. Here, we present maps of

model agreement between GARP and Maxent projections onto

climates corresponding to three time slices: 2020, 2050, and 2080

(Fig. 5). In addition, we summarize separately, by algorithm and

climate scenario, future predicted distributions to highlight

differences between model outputs, since ensemble forecasting is

not problem free, presenting issues such as masking model errors

[53] (Fig. 3).

As would be expected, the percent area of overlap between the

present and future projected niches is negatively correlated with

year (Table 3, Fig. 6). GARP models generally had a greater

overlap percentage as compared to Maxent models, with an

average overlap of 24.93% for GARP compared to 17.31% for

Maxent in the a2a scenario, and 28.62% for GARP versus 22.38%

for Maxent in the b2a scenario.

While there appears to be a dispersion corridor for L. reclusa

(Fig. 6; area of overlap), there is also the potential for extinction

(entirely or in portions of its range) if environmental change occurs

too quickly (given niche conservatism [54–57]) and/or the species

is not able to track its preferred habitat effectively. The future

niche models assume unlimited dispersal ability, which may or

may not be a valid assumption for this species. Dispersion of L.

reclusa is limited by its inability to balloon (i.e. be carried aloft by

air currents) [4], and thus the species may not track suitable

habitat northward in step with changing climate. However, the

partial synanthropy of the brown recluse, which can disperse with

human movement, may override a low biological dispersion/

dispersal potential.

The complexity of climatic processes leads to uncertainty

regarding how the Earth’s biota will respond to climate change.

ENM serves as a powerful tool to study these potential adjustments

[14,28–32,58–59]. The analyses presented herein illustrate abiotic

constraints to the distribution of the brown recluse and highlight

the potential for this species to move beyond the region it currently

inhabits as climate changes; these data are of relevance to health

professionals and the public, both at present and in the future.

We show that the geographic region representing suitable

habitat for the brown recluse may be considerably different in the

future from that of today. By 2080 perhaps only 5 percent of the

area characterized as suitable today will still fall under this

category. Newly suitable areas may encompass portions of

Wisconsin, Michigan, Indiana, Ohio, Pennsylvania, New York,

Nebraska and South Dakota. These states do not currently deal

with this species, at least on a large scale, which may create a

public health concern.

If a similar degree of niche displacement occurs across the

myriad species that exist globally, the biodiversity of this planet will

be significantly impacted. However, we are just beginning to

Table 1. Percent of niche overlap between the two climate
change scenarios (a2a and b2a) for three time slices: 2020,
2050, and 2080.

Algorithm 2020 2050 2080

Maxent 81.42 78.76 56.75

GARP 85.57 83.90 46.45

doi:10.1371/journal.pone.0017731.t001

Figure 4. Model agreement between climate change scenarios per time slice. GARP results are depicted above, with Maxent models below.
The two climate change scenarios (a2a and b2a) are compared, with area of overlap indicated in maroon, for the three time slices: 2020, 2050, and
2080. A threshold has been applied, allowing for a maximum of five percent omission error based on presence data. Results are depicted in USA
Contiguous Albers Equal Area Conic map projection.
doi:10.1371/journal.pone.0017731.g004
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understand the mechanics and consequences of these predicted

changes; we understand to an even lesser degree the consequences

on human health due to changes in the distributions of disease

vectors and pathogens. As in the present study, we can overcome

some of this uncertainty by using ENM to identify future potential

high-risk areas for disease vectors and hosts, explore parasite-

reservoir associations, and aid in planning vector-control strate-

gies. ENM is useful for studying the complex dynamics of

environment and biota over time and estimating distributional

changes to medically important species [this paper, 28–32], pests

[11,60–62], and those organisms in need of conservation [58–

59,63–64].

Materials and Methods

(a) Ecological niche modeling
Predictions about a species’ geographic distribution are built

using the correspondence between information about the presence

of a species and the associated environmental characteristics from

its known range, analyzed via computer algorithms [33–34,65].

The methodology is most often described as ecological niche

modeling (ENM), habitat modeling, or species distribution

modeling [66–68]. These are not identical, and disagreements

regarding the conceptual background and ecological interpreta-

tion of resulting models exist [13,69–70]. Here we employ ENM

and two of the most common applications of projecting the

resulting niche model on different spatial (geography) and

temporal (future climates) domains.

In ENM, species geographic occurrence points and predictor

variables (usually climatic) are used in correlative approaches to

make inferences about the ecological requirements for a species.

These requirements are often referred to as the niche of a species,

defined as the set of tolerances and limits in multidimensional

space that constrain where a species is potentially able to maintain

populations [71]. The modeled niche can be projected onto extant

and future climatic landscapes by identifying the current set of

favorable conditions and selecting for those same climatic

parameters on future maps. This technique is successful because,

at broad scales, abiotic factors are generally sufficient to

characterize the distribution of a species [54,72–73]. Furthermore,

the niche of a species is usually conserved [54–57], suggesting

adaptation to new niche space is unlikely, particularly under the

short time scales analyzed.

A criticism levied on projecting upon changed landscapes is that

modified interactions between species may influence potential

distribution more so than abiotic factors [74–75]. However, as

mentioned, abiotic variables appear to successfully predict paths of

species invasions and geographic distributions at broad scales

[54,72–73]. The future models can be thought of as representing

null expectations, sans interspecific biotic parameters and

Table 2. Percent of suitable niche space for L. reclusa, based
on the projected geographic region.

Future

a2a b2a

Algori-
thm Present 2020 2050 2080 2020 2050 2080

Maxent 13.68 12.28 16.14 19.26 13.55 14.31 16.80

GARP 15.89 13.57 13.49 8.77 12.78 12.28 11.40

doi:10.1371/journal.pone.0017731.t002

Figure 5. GARP-Maxent model agreement for each time slice and scenario. Maroon signals agreement; thus, blue areas are where Maxent
predicted suitable habitat, but not GARP, or vice versa. A threshold has been applied, allowing for a maximum of five percent omission error based on
presence data. Results are depicted in USA Contiguous Albers Equal Area Conic map projection.
doi:10.1371/journal.pone.0017731.g005
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assuming unlimited dispersal ability. These null models are useful

for exploring ‘‘what if’’ questions [15,18].

(b) Modeling algorithms
GARP and Maxent were chosen for niche model building, as

both programs are designed for predicting species’ distributions

when only presence data are available [76–77].

The Genetic Algorithm for Rule-set Prediction (GARP) is a

machine-learning algorithm that works in an artificial-intelligence

framework [33]. Rules are created through simple ‘‘IF ,condi-

tion1. ,condition2. … THEN ,prediction.’’ statements.

Once a rule is selected, it is applied to the training data (half the

points input into the program) and allowed to evolve to maximize

predictive accuracy. The change in predicted accuracy between

iterations is used to evaluate whether a rule should be included

within the model. We used a desktop version of GARP (Desktop

GARP 1.1.3) [78], activating the internal testing feature (i.e., 50%

of the input data were used to evaluate model quality within

GARP). We ran 100 models with a 0.01 convergence limit and

max iterations of 1000. Due to the random-walk nature of GARP,

we implemented the ‘‘best subsets’’ procedure [35] to retain 10

models based on two error statistics, omission (excluding known

presence data) and commission (including areas without confirmed

presence of species, but which are potentially habitable). A soft

omission threshold was used so that 20% of models with the lowest

omission error were retained; those models with intermediate

levels of commission were then chosen from this subset. The 10

best models were summed in ArcMap 9.3 (ESRI, Redlands, CA)

to create a model agreement map in GIS grid format.

Maxent is also a machine-learning method that estimates a

probability distribution for species’ occurrences by finding the

Table 3. Percent of niche overlap between present and
future models.

a2a b2a

Algorithm 2020 2050 2080 2020 2050 2080

Maxent 28.44 18.62 4.88 32.92 18.94 15.27

GARP 43.03 30.38 1.38 37.61 27.89 20.36

doi:10.1371/journal.pone.0017731.t003

Figure 6. Niche overlap between extant and future models. GARP results are depicted on the left, with Maxent models on the right. Three
time slices: 2020, 2050, and 2080 are illustrated for two climate change scenarios: a2a (liberal) and b2a (conservative). Area of overlap between the
extant and future models is portrayed in maroon. A threshold has been applied, allowing for a maximum of five percent omission error based on
presence data. Results are depicted in USA Contiguous Albers Equal Area Conic map projection.
doi:10.1371/journal.pone.0017731.g006
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distribution of maximum entropy (that which is closest to uniform),

subject to constraints defined by the environmental parameters

input into the model [34]. The default features of Maxent v. 3.1.1

were utilized, including random test percentage = 0, regulariza-

tion multiplier = 1, and maximum number of background

points = 10000. We also took advantage of the ‘‘remove duplicate

presences’’ function. The linear, quadratic, product, threshold,

and hinge feature types were enabled. We converted the floating-

point output models of Maxent into integer grids (retaining first 3

decimals), which are easier to manipulate in a GIS-framework,

using the Raster Calculator in ArcMap 9.3.

(c) Distributional data
Brown recluse occurrence data were obtained from the

American Museum of Natural History, the Museum of Compar-

ative Zoology, and from the Nationwide Brown Recluse Challenge

and a survey of Georgia by one of us (RSV). Alex Maywright and

Zuleyma Tang-Martinez (University of Missouri, St. Louis) kindly

provided a dataset from Illinois (from the Illinois Natural History

Survey), and Gail Stratton (University of Mississippi) generously

donated a dataset from a survey in northern Mississippi.

Locality information was georeferenced using the point-radius

method [79], where each locality was treated as a circle with a

point in the center. The radius represents the maximum distance

from the point within which the locality is expected to occur. All

occurrence points were georeferenced, excluding the Mississippi

dataset that had been assigned coordinates with a GPS. Error was

allocated to the GPS data points using the MaNIS/HerpNet/

ORNIS Georeferencing Calculator [79]. Georeferencing was

primarily conducted using BioGeomancer [80], since most

localities simply referred to a town and state. The center of the

town was manually determined using the underlying topographic

map function, and the error was adjusted within BioGeomancer to

include the full extent of the town. When presented with a specific

street address, the exact address was georeferenced, and the extent

of the street was used to calculate error. Localities described with

offset distances (e.g., ‘‘1 mi south of Rolla, Missouri’’) were

georeferenced by measuring the extent and center of the named

place (usually a town) in Google Earth 5.0. These measurements

were then imported into the MaNIS/HerpNet/ORNIS Geor-

eferencing Calculator to find the geographic coordinates and error

associated with them. Any obviously inaccurate and/or dubious

locality information was not georeferenced.

Only those locality points with less than 18 km spatial

uncertainty were retained, totaling 240 spatially unique records.

Model training occurred with 126 records; the other portion was

set aside for model validation. The error in the locality data should

not significantly influence model performance [81]. Note that

verifiable sink populations (i.e., spot records) were not selected for

model building for fear of biasing results; thus, the Atlantic

seaboard records mentioned from the Nationwide Brown Recluse

Challenge [40] were not employed in modeling.

(d) Predictor data
Niche models for the present-day distribution were constructed

using seven climatic variables from WorldClim v. 1.4 [82],

including annual mean temperature, mean diurnal range,

maximum temperature of warmest month, minimum temperature

of coldest month, annual precipitation, precipitation of wettest

month, and precipitation of driest month. These seven variables

capture the climatic dimensions most likely to limit the

distributional extent of the species, and they have been used in

other studies to positive ends [e.g., 26,83]. The data were

downloaded in the form of 10 arc-minute bioclimatic GIS grids,

mirroring the resolution of our occurrence data. The layers were

clipped to the training region of the study, which included the area

between the Rocky and Appalachian Mountains, USA (i.e. the

Midwest). This region was chosen because it (i) encompasses the

entire range of the brown recluse as determined from previous

studies, and (ii) represents an area most likely accessible to the

species (i.e., within its ‘‘M’’ domain but including area thought to

be unsuitable, sensu [84]).

The same seven predictors were employed in forward modeling.

Future climate data were downloaded in the form of 10 arc-

minute grids from WorldClim v. 1.4 [82]; layers were calibrated

and statistically downscaled using the WorldClim data for current

conditions. The future environmental parameters were derived

from the Canadian Centre for Climate Modeling and Analysis

(CCCma) Second Generation Coupled Global Climate Model

(CGCM2) under the IPCC3 A2 and B2 emission scenarios [85].

We used a liberal (a2a) and conservative (b2a) scenario of socio-

economical and associated green house gas changes for three time

slices: 2020, 2050, and 2080. The A2 and B2 storylines assume

heterogeneous world development, as opposed to globalization.

Driving forces in the a2a storyline are high population growth

rates, increased energy and land-use changes, and slow techno-

logical change. Conversely, the B2 storyline simulates slower

population growth rates and land-use changes and more

technological innovations.

The data were imported into DIVA GIS 7.1.6 to correctly

convert native BIL layer formats to ESRI grid files. Arc Macro

Language (AML) code (available at www.worldclim.org) was then

run to generate the same set of bioclimatic variables used for current

modeling. The ability to match the bioclimatic variables used for

present-day modeling is why we chose the CCma climate model.

(e) Model analysis and validation
Model quality was assessed with (i) an omission error test, which

examines false negatives or the number of test occurrences

predicted absent by the niche models [35], (ii) by comparison to

expert opinion [4], and (iii) with the partial Receiver Operating

Characteristic analysis (partial ROC) [35–36]. The area under the

curve (AUC) in ROC analyses is a threshold-independent measure

of model performance as compared to null expectations. By

implementing a threshold on the 1-omission error (y) axis,

calculation of partial ROC is restricted to the region of high

model sensitivity (low omission error). To compare model ROC

AUC ratios with null expectations, the dataset was bootstrapped

and a Z value (standard normal approximation) obtained. We used

a Visual Basic routine developed by N. Barve (University of

Kansas) to calculate AUC ratios, performing 1000 iterations with

the omission threshold set at five percent [36].

To facilitate comparison between predictions, we reclassified the

model agreement (GARP) and continuous (Maxent) outputs to

simple 0 and 1 values (0 = unsuitable habitat, 1 = suitable habitat).

All models were reclassified to presence/absence pixels within

ArcMap 9.3 using threshold values that allowed a maximum of

five percent omission error based on the presence data available.

Calculation of area predicted present was performed using the

Zonal Statistics function of ArcMap 9.3 and the USA Contiguous

Albers Equal Area Conic map projection. The ArcMap Raster

Calculator was used to determine area of overlap between niche

models.
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59. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate

change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:
8245–8250.

60. Peterson A, Vieglais D (2001) Predicting species invasions using ecological niche
modeling: new approaches from bioinformatics attack a pressing problem.

BioScience 51: 363–371.

61. Papes M, Peterson AT (2003) Predicting the potential invasive distribution for
Eupatorium adenophorum Spreng. in China. J Wuhan Bot Research 21: 137–142.

62. Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the
potential global distribution of a problematic alien invasive species - the

American bullfrog. Divers Distrib 13: 476–485.
63. Pressey R (1994) Ad hoc reservations: forward or backward steps in developing

representative reserve systems. Conserv Biol 8: 662–668.

64. Williams P, Gibbons D, Margules CR, Rebelo A, Humphriest C, et al. (1996) A
comparison of richness hotspots, rarity hotspots, and complementary areas for

conserving diversity of British birds. Conserv Biol 10: 155–174.
65. Elith J, Graham CH, Anderson RP, Dudı́k M, Ferrier S, et al. (2006) Novel

methods improve prediction of species’ distributions from occurrence data.

Ecography 29: 129–151.
66. Peterson AT (2000) Predicting species’ geographic distributions based on

ecological niche modeling. Condor 103: 599–605.
67. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in

ecology. Ecol Model 135: 147–186.
68. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species

distributions? J Appl Ecol 41: 193–200.

69. Kearney M (2006) Habitat, environment and niche: what are we modeling?
Oikos 115: 186–191.
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